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ABSTRACT 

Vibrations of a wind turbine have a negative impact on its performance and 

therefore approaches to effectively control turbines are sought by wind industry. The 

body of previous research on wind turbine vibrations has focused on physics-based 

models. Such models come with limitations as some ideal assumptions do not reflect 

reality. In this Thesis a data-driven approach to analyze the wind turbine vibrations is 

introduced.  

Improvements in the data collection of information system allow collection of 

large volumes of industrial process data. Although the sufficient information is contained 

in collected data, they cannot be fully utilized to solve the challenging industrial 

modeling issues. Data-mining is a novel science offers platform to identify models or 

recognize patterns from large data set. Various successful applications of data mining 

proved its capability in extracting models accurately describing the processes of interest. 

The vibrations of a wind turbine originate at various sources. This Thesis focuses 

on mitigating vibrations with wind turbine control. Data mining algorithms are utilized to 

construct vibration models of a wind turbine that are represented by two parameters, 

drive train acceleration and tower acceleration. An evolutionary strategy algorithm is 

employed to optimize the wind turbine performance expressed with three objectives, 

power generation, vibration of wind turbine drive train, and vibration of wind turbine 

tower. 

The methodology presented in the Thesis is applicable to industrial processes 

other than wind industry.
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CHAPTER 1. 

INTRODUCTION 

Recent years have seen growing interest in renewable energy. This increase is 

driven, in part, by growing awareness of the energy cost, climate changes, supply 

uncertainty, and environment concerns.  

Wind energy is recognized as one of the most important sources of renewable 

energy and this awareness has translated in expansion of investments in this area. In 

2008, the U.S. Department of Energy has produced a report aiming at increasing 

contribution of wind energy to the electricity supply to 20% by 2030. However, 

challenging issues, such as higher operation, maintenance and market costs than other 

conventional energy sources in many areas across the country, create a great barrier on 

this road. To accomplish this ambitious goal, numerous questions of wind energy need to 

be addressed, including providing control strategies to mitigate wind turbine vibrations.  

 Research in conventional power systems has introduced numerous simulation 

models for analysis of different operational scenarios of those systems. Yet, a commercial 

wind farm includes a large number (dozens to hundreds) of megawatt-class turbines with 

static and dynamic characteristics that differ from the conventional power plants. 

Therefore, the modeling template developed for conventional power generating facilities 

is not compatible with modeling wind turbines. Novel methodologies to model wind 

turbine systems are needed by wind energy industry.  

 The research in wind energy has intensified in recent years. Areas with the most 

research progress include the design of wind turbines [1, 2], the design and reliability of 

wind farms [3, 4, 5], the control of wind turbines [6, 7, 8, 9], wind energy conversion [10, 

11], the prediction of wind power [12, 13], and condition monitoring of wind turbines 

[14, 15]. Although numerous novel modeling methods were addressed in the literature, 

the major focus was on developing accurate power prediction models compare to other 

topics. Wind turbine vibrations impact performance and life-cycle of wind turbines and 
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therefore it deserves further studies. Mitigating the vibrations of a wind turbine can 

potentially prevent material fatigue, reduce number of component failures, improve 

power quality and extend life-cycle of some components, such as gearbox. This in turn 

translates into increased turbine availability and reduced maintenance costs. 

The goal of the Thesis is to analyze wind turbine vibrations and developing 

nonlinear and nonparametric models to optimize wind turbine performance in considering 

three objectives, maximization of the power produced by a wind turbine, and reduction of 

vibrations of the turbine’s drive train and tower. 

Researchers introduced models to predict wind power and describe vibrations of 

components of a wind turbine. Nevertheless, the majority of the published research falls 

into parametric and physics-based models. It is widely recognized such models usually 

involve assumptions, and therefore they may not adequately represent reality.  

1.1 Review of wind turbine vibration research 

The sources of wind turbine vibrations [16] are diverse and due to the large size 

of wind turbines, conducting laboratory experiments with such systems is difficult. Thus, 

the past wind turbine vibration research has primarily focused on the building models 

based on first principles and simulation. Leithead et al. [17] studied dynamics of variable 

speed wind turbines and design of models to control wind turbines. Fadaeinedjad et al. 

[18] investigated the impact of voltage sag on vibration of the wind turbine tower. They 

used three simulation programs, TrubSim, FAST and Simulink, to model wind turbines. 

Murtagh et al. [19] investigated control wind turbine vibration by incorporating a passive 

control device. A passive control method using a tuned mass damper to mitigate 

vibrations of the blades and tower of a wind turbine was introduced. The research 

reported in [20] discussed the estimation of aeroelastic damping of operational wind 

turbine modes based on experiments.  
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The physics-based or simulation based wind turbine vibration models introduced 

in the past research provided a solid foundation of understanding the nature of wind 

turbine vibrations. Unfortunately, these models involve assumptions that the industry 

finds restrictive. Therefore, new and more effective approaches are needed. 

1.2 Review of approaches for building predictive models  

Accurate prediction of wind power is essential for integration of commercial wind 

farms with the electric grid. Prediction of wind speed is one of the elements of power 

prediction. Numerous approaches to predicting wind speed have been developed. Louka 

et al. [21] applied Kalman filters to enhance wind speed prediction using hourly data. 

Flores et al. [22] employed neural networks for hourly prediction of wind speed and 

designed a control system for active power generation. El-Fouly et al. [23] developed a 

linear time-series strategy to predict hourly wind speed and direction. Power prediction 

researches also have been addressed in various published literature.  Damousis et al. [24] 

used a fuzzy logic model trained by a genetic algorithm to predict wind speed and power 

over 0.5 to 2 hour horizons. Contaxis et al. [25] introduced an ARMA model to predict 

power produced by wind turbine in a study of short term scheduling issue. Anahua et al. 

[26] presented a stochastic differential equation to estimate power by describe power 

generation as a Markov process. Landberg et al. [27] predict the power produced by a 

wind farm through establishing a model by using the data from the weather prediction 

model (HIRLAM) and the local weather model (WASP).  

In the published literature on wind and power prediction, statistical model, 

physics-based model and climate model have been widely discussed. However, the 

published research has mainly concentrated on long-time predictions, e.g., hourly 

predictions. To control of a wind turbine, accurate short-term power prediction models, 

such as 1-min or 10-s power prediction models are needed. Due to the higher sampling 

frequency of data, the stochastic nature of the wind speed was more significant and it 
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makes modeling its behavior a challenge. The past states of wind speed, temperature, 

humidity, latitude, terrain topography, air pressure and other factors all impact wind 

speed. Thus, the quality of power predicted for a wind turbine is dependent on the 

accuracy of wind speed prediction. The previous research [13] has demonstrated 

suitability of the data-driven approach  

1.3 Computational intelligence and optimization  

New theories and advances in computational intelligence, fuzzy logic, and image 

processing offer alternatives to model and solve problems in energy systems.  

Chu et al. [28] applied a neural network to predict the performance index and 

non-analytical constraints, thus speeding up the trial-and-error approach of finding the 

optimal operating points optimizing a boiler’s combustion process. Rusinowski et al. [29] 

focused on finding an optimal travelling rate of the grid and an optimal height of the fuel 

layer. Büche et al. [30] applied an evolutionary computation algorithm to find an optimal 

design of a burner to reduce NOx emissions as well as pressure fluctuation. Wang et al. 

[31] applied a naïve intelligent control algorithm to determine the best air supply for a 

boiler. Cass et al. [32] combined the neural network and evolutionary computation 

techniques to determine an optimal fuel/air ratio. 

Kusiak et al. [33] addressed anticipatory control of wind turbine by integrating 

data mining and evolutionary strategy algorithms. Li et al. [34] introduced a hybrid 

genetic and immune algorithm to solve the optimization problem of internal electric 

connection system of large offshore wind farms. Prats et al. [35] applied fuzzy control 

techniques to improve wind energy capture for variable speed and variable pitch wind 

turbines. Sareni et al. [36] developed multi-objective genetic algorithm to study the 

optimal design of a small passive wind turbine generator by considering the size, power 

generation and other issues. 
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1.4 Thesis structure 

Figure 1.1 illustrates the structure of the Thesis. Five data mining algorithms, 

Neural Network, Support Vector Machine, Standard C&R Tree, Boosting Tree and 

Random Forests are used to construct models for wind turbine vibrations. Chapter 2 

presents analysis of wind turbine vibration data collected from SCADA systems in time 

and frequency domain. In Chapter 3, modeling wind turbine vibrations in drive train and 

tower by data-mining algorithms are discussed. Chapter 4 presents optimization model of 

wind turbine performance. 

 

Figure 1.1 The Thesis structure 
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In Chapter 2, three approaches, namely the predictor importance analysis, the 

global sensitivity analysis, and the correlation coefficient analysis, are applied to 

determine turbine parameters that could potentially mitigate turbine vibrations. In the 

frequency domain analysis, Fourier analysis transforms time domain data into frequency 

domain to demonstrate another approach to vibration studies. 

In Chapter 3, application of wavelet analysis in smoothing data is discussed as 

sensors to measure drive train acceleration and tower acceleration are noise sensitive.  

In Chapter 4 a framework for wind turbine performance optimization is presented. 

Data mining and evolutionary algorithms are integrated to model and solve multi-

objective optimization model of maximizing power generation, and reducing vibrations 

of the drive train and the tower. Tuning parameters of evolutionary strategy algorithm is 

discussed to improve computational efficiency. Three weight assignment cases are 

discussed and computational gains in power maximization and vibration reduction are 

presented. 
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CAPTER 2. 

ANALYSIS OF WIND TURBINE VIBRATION 

2.1 Introduction 

In this chapter, analysis of wind turbine vibration in the time domain and the 

frequency domain is introduced. Two parameters the drive train acceleration and the 

tower acceleration are utilized to represent the wind turbine vibration.  

The sources of wind turbine vibrations [16] are diverse. The focus of this research 

is on vibrations attributed to the control of wind turbines, e.g., control of the generator 

torque and blade pitch angle. Data partitioning strategy is applied to divide data set 

according to fixed range of wind speed so that impact of wind speed in wind turbine 

vibration can be mitigated and vibrations associated to control parameters of wind turbine 

can be emphasized.  

The basis of the time domain analysis is statistical and data-driven methodologies. 

Three approaches, namely the predictor importance analysis, the global sensitivity 

analysis, and the correlation coefficient analysis, are applied to determine turbine 

parameters that could potentially mitigate turbine vibrations. In the frequency domain 

analysis, data is transformed from time domain to frequency domain by Fourier analysis 

and this approach offers an alternative angle to understand wind turbine vibration.   

2.2. Data description 

In this research, data sets collected by the SCADA system at two variable speed 

1.5MW turbines of a large wind farm are used. Each data set contains average values of 

more than 120 parameters, including vibration parameters, all stored at 10-second (10-s) 

intervals and thus the sampling frequency is 0.1Hz. Although the SCADA system 

contains values of many parameters, only some of them are of interest to vibration 

analysis.  The literature and domain expertise was used to select a list of parameters that 
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could be potentially relevant to the research discussed in this paper. Table 2.1 illustrates 

the format of the data used in this research.   

Table 2.1 Sample data set 

Observati
on No. Time Torque 

Value [%] 
Wind 
Speed 
[m/s]

…
Drive Train 
Acceleration 

[mm/s2]

Tower 
Acceleration 

[mm/s2]

1 10/1/08 
12:00 AM 22.10 5.77 … 25.67 29.31 

2 10/1/08 
12:00 AM 22.60 6.45 … 24.78 30.26 

3 10/1/08 
12:00 AM 23.10 6.07 … 23.89 31.21 

… … … … … … … 

60482 10/8/08 
12:00 AM 0.00 2.74 … 18.01 29.34 

 

As illustrated in Table 2.1, the values of all parameters contained in the data set, 

such as torque, wind speed, wind deviation, drive train acceleration, and tower 

acceleration, are time stamped. The wind turbine vibration is indicated by two important 

parameters, the drive train acceleration reflecting vibrations of the drive train, and the 

tower acceleration reflecting vibrations of the tower. The accelerometer measuring the 

drive train acceleration is attached at the rear bottom of nacelle and the tower acceleration 

accelerometer is located near the nacelle and tower connection.  

2.3 Data pre-processing 

Since the data set is stored at 10-s intervals, the month-long data set considered in 

this research is large, and it contains errors caused by malfunction of sensors, mechanical 

systems, and the data collection system. Those errors usually appear as missing values, 
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values that are out of range, and invalid values. For example, the net power produced by 

a wind turbine should be a positive number, which is usually between 0 and its rated 

power. Thus, filtering erroneous values is a significant step in data-driven research. 

However, once the error logic is discovered, the data cleaning process can be automated.  

After filtering the errors and invalid values, three derived parameters are created 

based on the original SCADA data. The first one is the wind deviation (yaw error), which 

is defined as the difference between the wind direction and the nacelle position. The next 

two are the rate of change of torque and the rate of change of the pitch angle. The rate of 

change of torque (referred to as torque rate) is the difference between the current torque 

value and the torque value at the preceding time 10-s interval (see Eq. (2.1)). The rate of 

change of pitch angle (referred to as blade pitch angle rate) is the difference between the 

current pitch angle and the pitch angle preceding the 10-s time interval (see Eq. (2.2)).  

Torque Rate Torque Value( ) Torque Value( 1)t t= − −                 (2.1) 

 Pitch Angle Rate Pitch Angle( ) Pitch Angle( 1)t t= − −                           (2.2) 

The two derived parameters (see Eqs (2.1) and (2.2)) provide additional 

information about wind turbine vibrations from the rate of change perspective. 

In the time domain analysis, the entire data set is used for training models, and it 

is decomposed into three partitions based on the wind speed values: wind speed in the 

interval [3.5 m/s, 7 m/s), [7 m/s, 12 m/s), and [>=12 m/s]. This rather arbitrary 

partitioning is based on the sigmoid shape of power curve and provides a way to isolate 

the turbine vibrations attributed to both the drive train and the tower from the impact of 

other factors such as the wind itself, malfunctions of mechanical systems (e.g., shaft 

misalignments), and so on (see Table 2.2). 
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Table 2.2 Three data subsets 

Wind Turbine 1 
Data Partition No. Wind Speed Number of Data Points 

1 [3.5m/s, 7m/s) 77593 10-s observations 
2 [7m/s, 12m/s) 103148 10-s observations 
3 [>=12m/s] 21525 10-s observations 

Wind Turbine 2 
Data Partition No. Wind Speed Number of Data Points 

1 [3.5m/s, 7m/s) 63554 10-s observations 
2 [7m/s, 12m/s) 103115 10-s observations 
3 [>= 12m/s] 11855 10-s observations 

 
 

Although the volume of data collected at the wind farm is large, some data 

samples are biased, i.e., some observations included in the population dominate other 

data points. A typical biased data sample of torque values included in Data Partition 1 of 

Turbine 1 (see Table 2.2) is illustrated in the histogram of Fig. 2.1.  

 

 

Figure 2.1 Torque histogram for data partition 1 of turbine 1 
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It is obvious from the histogram in Fig. 1 that the torque rates in the interval [-

0.84, 0.84] have a much higher frequency than the values in other intervals. Thus, the 

number of observations in this interval needs to be reduced from about 36000 to 7000. 

This has been accomplished with a random sampling without a replacement scheme. The 

histogram of torque values after sampling is presented in Fig. 2.2. 

 

Figure 2.2 Torque histogram for data partition 1 of turbine 1 after sampling 

2.4 Data analysis of wind turbine vibration in time domain 

    In this research, several parameters measured by sensors or derived from data, 

such as torque, torque rate, wind speed, wind deviation, blade pitch angle (average of the 

three measured pitch angles, one for each blade), and the blade pitch rate, are considered 

as the major factors potentially impacting the turbine vibrations. These parameters are 

selected mainly based on domain knowledge and study of the wind energy literature [37, 

38].  

    The tower and drive train accelerations are recorded by the SCADA system. As 

there are two similar measured values offered by the sensor installed on the drive train, 
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the average value of drive train acceleration is considered for simplicity of analysis. 

Three different data approaches are applied to quantitatively analyze the impact of each 

of the selected parameters on the turbine vibrations reflected by the drive train 

acceleration and the tower acceleration. The data analysis approaches include the 

predictor importance analysis, the global sensitivity analysis, and the correlation 

coefficient analysis, and they are applied to each of the three data partitions of Table 2.2. 

Predictor importance is determined by the boosting regression tree algorithm [39, 40]. 

The predictor importance statistics, e.g., the sum of the squares’ errors, are computed for 

each split during the process of building trees, and the best predictor parameter is then is 

selected. An average statistic is computed over all trees and all splits. The predictor 

parameter with the highest value is assigned the value of 100, and other parameters are 

assigned lower values. The global sensitivity analysis ranks the importance of inputs on 

the model extracted by a neural network approach [41, 42, 43]. It examines the 

contribution of uncertainty of all inputs to the output of the model simultaneously, rather 

than individually, to determine the order of parameter importance. The correlation 

coefficient [44] is a statistical approach to analyze the relationship between predictors 

and the target based on their affinity.  
 

2.4.1 Analysis of data set with wind speed between 3.5m/s 

and 7m/s 

For Data Partition 1 of Table 2.2, the wind speed of both turbines is in the interval 

[3.5 m/s, 7 m/s). Due to the fact that the wind speed is rather low, its impact on the drive 

train and the tower is likely to be minimal.  
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Figure 2.3 Histogram of the blade pitch angle rate of turbine 1 in data partition 1 

 

 

Figure 2.4 Histogram of the blade pitch angle rate of turbine 2 in data partition 1 
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It is also known that for low wind speeds, the blade pitch angle remains mostly 

constant for most pitch controlled turbines as shown in Figure 2.3 and Figure 2.4; 

therefore, this parameter could be excluded in the analysis. Table 2.3 shows the impact of 

predictors (measured with the predictor importance) on the drive train acceleration and 

the average tower acceleration of the two turbines.  

Table 2.3 Ranking produced by predictor importance analysis                                               
for two turbines for data partition 1 

Predictor  
Drive Train Acceleration Tower Acceleration 

Turbine 1
Predictor Rank

Turbine 2
Predictor Rank

Turbine 1 
Predictor Rank 

Turbine 2
Predictor Rank

Torque Value 100 100 90 95 
Torque Rate 79 94 100 98 

Wind Deviation 54 57 91 93 
Blade Pitch Angle 54 66 67 100 

Wind Speed 47 46 51 82 
 

    The values of the predictor rank in Table 2.3 are generated by the boosting tree 

regression algorithm. The predictor importance varies by the predictor (e.g., Torque 

Value, Torque Rate) and the target (i.e., Drive Train Acceleration, Tower Acceleration).   

   The global sensitivity rankings produced by a neural network are provided in 

Table 2.4. Although the scale used to rank the predictors is different than the one used in 

Table 2.3, a higher ranking value indicates that the contribution of the corresponding 

parameter for making predictions is higher.   
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Table 2.4 Rankings produced by the global sensitivity analysis                                              
for two turbines for data partition 1 

Predictor  
Drive Train Acceleration Tower Acceleration 

Turbine 1
Predictor Rank

Turbine 2
Predictor Rank

Turbine 1 
Predictor Rank 

Turbine 2
Predictor Rank

Torque Value 3.27 3.87 3.27 1.25 
Torque Rate 1.55 2.02 1.11 1.04 

Wind Deviation 1.03 1.00 1.02 1.01 
Blade Pitch Angle 1.02 1.01 1.07 1.00 

Wind Speed 1.96 1.33 1.64 1.05 
 

 

Table 2.5 illustrates the correlation coefficient between predictors and two 

accelerations. A higher value of the correlation coefficient indicates a stronger 

dependence between a predictor and the vibration.  

Table 2.5 Rankings produced by the correlation coefficient analysis                                          
for two turbines for data partition 1 

 

Predictor  
Drive Train Acceleration Tower Acceleration 
Turbine 1

Correlation
Coefficient

Turbine 2
Correlation
Coefficient

Turbine 1
Correlation
Coefficient

Turbine 2 
Correlation 
Coefficient 

Torque Value 0.74 0.50 0.30 0.11 
Torque Rate -0.23 -0.22 -0.05 0.01 

Wind Deviation 0.14 0.04 0.09 0.05 
Blade Pitch Angle -0.36 -0.19 -0.17 -0.06 

Wind Speed 0.55 0.28 0.17 -0.03 
 

      In the boosting tree regression analysis, a higher predictor rank points to a 

stronger impact of the predictor on a target variable (here vibration). The nature of the 

global sensitivity analysis is similar to the regression boosting tree analysis. However, the 

correlation coefficient analysis offers a different concept. A positive correlation 

coefficient implies that the two variables are positively and linearly correlated, while a 
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negative correlation coefficient indicates the inverse relationship. A higher value of the 

correlation coefficient indicates a more obvious linear relationship between the 

corresponding variables. In Table 2.3, the rank of the torque in respect to the drive train 

acceleration is 100, the highest of all other parameters. In Table 2.4, the rank value of 

torque is also the highest for both two turbines. In Table 2.5, the correlation coefficient 

between the torque value and the drive train acceleration is the highest, which means that 

the vibrations of the drive train are strongly associated with the torque value. These 

observations indicate that in the speed interval [3.5 m/s, 7 m/s) large values of the torque 

potentially contribute to higher acceleration of the drive train. The torque rate of change 

is another variable with a strong impact on vibrations of the drive train of a wind turbine. 

In the boosting tree regression analysis, the torque rate of change ranked after the torque 

value for both turbines. In the global sensitivity analysis, it is ranked third for Turbine 1 

and second for Turbine 2. The wind speed turns out to be more important for Turbine 1 

than for Turbine 2. The correlation coefficient in Table 2.5 provides a different result for 

the torque rate, as it emphasizes the linear relationship rather than the non-linear 

relationship between the corresponding variables. In this case, the results of the first two 

analyses provide more valuable information and indicate that the torque rate of change is 

another factor (after torque value) strongly associated with the vibrations of the turbine 

drive train. 

    For the tower vibration, no single parameter consistently scores the highest rank 

in all three analyses. However, the rank values in Table 2.3 and Table 2.4 indicate that 

the torque value is more important than most other variables for both turbines. In Table 

2.3, the rank of torque value is 90 for Turbine 1 and 95 for Turbine 2. In Table 2.4, the 

rank of torque value is 3.27 for Turbine 1 and 1.25 for Turbine 2. In conclusion, although 

the rankings for a turbine tower provided by the three analyses are somehow different, it 

is apparent that the torque is associated with the vibrations at the turbine tower. 
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2.4.2 Analysis of data set with wind speed between 7m/s 

and 12m/s 

In Data Partition 2 of Table 2.1, the wind speed falls in the interval [7 m/s, 12 

m/s). Figure 2.5 and 2.6 illustrate the blade pitch angle rate (i.e., the change of pitch angle 

in the consecutive time points (see Eq. (2)) for the data sets of two turbines.  

 

 

Figure 2.5 Histogram of the blade pitch angle rate of turbine 1 in data partition 2 
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Figure 2.6 Histogram of the blade pitch angle rate of turbine 2 in data partition 2 

The blade pitch angle of two wind turbines (see Figsure 5 and 6) does not 

significantly change. Table 2.6 shows the results of the predictor importance analysis of 

two turbines in Data Partition 2. Table 2.7 illustrates the results of the global sensitivity 

analysis for the two turbines. Table 8 presents the results of the correlation coefficient 

analysis in this scenario. 

Table 2.6 Ranking produced by the predictor importance analysis                                           
for two turbines in data partition 2 

Predictor Importance 
 Analysis 

Drive Train Acceleration Tower Acceleration 
Turbine 1

Predictor Rank
Turbine 2

Predictor Rank
Turbine 1 

Predictor Rank 
Turbine 2

Predictor Rank
Torque Value 100 100 100 98 
Torque Rate 86 95 84 100 

Wind Deviation 42 47 39 48 
Blade Pitch Angle 71 76 71 81 

Wind Speed 69 55 80 76 
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Table 2.7 Rankings produced by the global sensitivity analysis                                              
for two turbines in data partition 2 

Global Sensitivity  
Analysis 

Drive Train Acceleration Tower Acceleration 
Turbine 1

Predictor Rank
Turbine 2

Predictor Rank
Turbine 1 

Predictor Rank 
Turbine 2

Predictor Rank
Torque Value 3.87 3.77 1.25 1.17 
Torque Rate 2.02 1.90 1.04 1.11 

Wind Deviation 1.00 1.00 1.01 1.01 
Blade Pitch Angle 1.01 1.02 1.00 1.01 

Wind Speed 1.33 1.42 1.05 1.17 
               

 

Table 2.8 Rankings produced by the correlation coefficient analysis                                         
for two turbines in data partition 2 

Correlation Coefficient 
Analysis 

Drive Train Acceleration Tower Acceleration 
Turbine 1

Correlation
Coefficient

Turbine 2
Correlation
Coefficient

Turbine 1 
Correlation 
Coefficient 

Turbine 2
Correlation
Coefficient

Torque Value 0.69 0.51 0.52 0.38 
Torque Rate 0.08 0.12 0.08 0.14 

Wind Deviation 0.02 0.03 0.00 0.01 
Blade Pitch Angle 0.25 0.23 0.23 0.23 

Wind Speed 0.63 0.48 0.48 0.35 
 

 

Torque value is considered as the most important variable in vibration analysis of 

the drive train. In Table 2.6, the rank of torque value is 100 for both turbines. Table 2.7 

confirms the results of Table 2.6. In Table 2.8, the correlation coefficient between the 

torque value and the drive train acceleration is the highest. These results confirm that the 

torque value is the most significant parameter related to vibrations of the drive train. 

Torque rate could be considered as the second most important parameter associated with 

the drive train vibration. The blade pitch angle could be another parameter potentially 
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causing the wind turbine vibrations, as confirmed by the predictor importance analysis 

and correlation coefficient analysis. 

In analyzing tower accelerations, the torque value ranks highest for Turbine 1 

(Table 2.6). It also scores the second highest rank (98) for Turbine 2. The global 

sensitivity analysis (Table 2.7) shows that the torque value is also important, as it gets 

ranked close to other parameters. In Table 2.8, the correlation coefficient between the 

torque value and the tower acceleration is the highest. The torque rate and blade pitch 

angle are also important factors related to the tower acceleration. In the predictor 

importance analysis, the rank values of the torque rate and the blade pitch angle for both 

turbines are higher than 70. In Table 2.7, the rank values of the variables besides torque 

value are similar. In Table 2.8, the blade pitch angle shows a higher correlation with the 

tower acceleration than the torque rate. In conclusion, although the results from different 

analyses point to different importance of parameters, the results imply that the torque rate 

and blade pitch angle are strongly associated with the tower acceleration. 
 

2.4.3 Analysis of data set with wind speed higher than 

12m/s 

    In this scenario, all the wind speeds are higher than 12 m/s. As the torque value 

does not frequently change (see Figure 2.7 and 2.8) it is not considered in the analysis 

discussed in this section. The predictor importance is reported in Table 2.9; Table 2.10 

shows the results of the global sensitivity analysis, and Table 2.11 presents the results of 

the correlation coefficient analysis. This scenario (speed above 12 m/s) is considered to 

be high wind speed, and it is likely that some vibrations of the wind turbine are 

contributed by the wind.  
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Figure 2.7 Histogram of torque rate of turbine 1 in data partition 3 

 

Figure 2.8 Histogram of torque rate of turbine 2 in data partition 3 
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The analysis of the drive train acceleration data has revealed that the association 

of the blade pitch angle with turbine vibrations is the strongest of all parameters. In Table 

2.9, the predictor importance analysis ranks the blade pitch angle as the most important 

factor. In Table 2.10, the rank value of the blade pitch angle is higher than for other 

parameters. In Table 2.11, although the correlation coefficient between wind speed and 

drive train acceleration is higher than that between the blade pitch angle and drive train 

acceleration, the difference between the two correlation coefficients is not significant. 

Besides the blade pitch angle, other variables such as torque value, torque rate, and wind 

deviation, can also impact the drive train acceleration; however, the impact is not as 

significant as the blade pitch angle. 

 The analysis of data shows that the blade pitch angle is the most significant factor 

associated with the tower acceleration. The rank value of the blade pitch angle in Table 

2.9 and Table 2.10 is the highest. The correlation coefficient between the blade pitch 

angle and the tower acceleration is almost identical to the correlation coefficient between 

the wind speed and the tower acceleration (see Table 2.11). 

Table 2.9 Ranking produced by the predictor importance analysis                                         
for two turbines in data partition 3 

Predictor Importance  
Analysis 

Drive Train Acceleration Tower Acceleration 
Turbine 1

Predictor Rank
Turbine 2

Predictor Rank
Turbine 1 

Predictor Rank 
Turbine 2

Predictor Rank
Torque Value 42 38 44 49 

Blade Pitch Angle Rate 37 29 52 44 
Wind Deviation 12 13 31 25 

Blade Pitch Angle 100 100 100 100 
Wind Speed 90 91 84 89 
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Table 2.10 Ranking produced by the global sensitivity analysis                                              
for two turbines in data partition 3 

Global Sensitivity  
Analysis 

Drive Train Acceleration Tower Acceleration 
Turbine 1

Predictor Rank
Turbine 2

Predictor Rank
Turbine 1 

Predictor Rank 
Turbine 2

Predictor Rank
Torque Value 1.03 1.02 1.01 1.01 

Blade Pitch Angle Rate 1.07 1.04 1.04 1.02 
Wind Deviation 1.00 1.01 1.01 1.01 

Blade Pitch Angle 1.72 2.93 1.76 1.81 
Wind Speed 1.17 1.15 1.17 1.02 
 

Table 2.11 Ranking produced by the correlation coefficient analysis                                      
for two turbines in data partition 3 

Correlation Coefficient 
Analysis 

Drive Train Acceleration Tower Acceleration 
Turbine 1

Correlation
Coefficient

Turbine 2
Correlation
Coefficient

Turbine 1 
Correlation 
Coefficient 

Turbine 2
Correlation
Coefficient

Torque Value -0.09 -0.10 -0.03 -0.09 
Blade Pitch Angle Rate 0.08 0.01 0.09 0.02 

Wind Deviation 0.00 0.02 -0.04 -0.02 
Blade Pitch Angle 0.78 0.85 0.64 0.67 

Wind Speed 0.84 0.86 0.66 0.69 
 

2.5 Data analysis of wind turbine vibration in frequency 

domain 

Besides the wind and control, malfunctions of turbine components may contribute 

to the vibrations of a wind turbine [16]. Usually, the aberrations may be caused by 

mechanical problems and are difficult to observe in the time domain. Projecting the time 

domain data into the frequency domain (power spectrum) shown in Figure 2.9 offers an 

alternative view. The x-axis in Figure 2.9 represents the frequency, and the y-axis is the 

power corresponding to the drive train acceleration. 
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                  Figure 2.9 Spectrum from 0 to 0.05 Hz of the drive train acceleration of 
turbine 1 

 

  Usually, wind turbine vibrations caused by malfunctions of the power train are 

expressed as peaks in the spectrum at different frequencies. However, since the sampling 

time of the data set available for this study is only 10 seconds, only a small portion of the 

data frequency (up to 0.05 Hz) is reflected in the spectrum.  Based on this limited 

analysis and information of turbine status from wind farm, an assumption that the turbine 

is operated in normal condition is made in this research and vibration caused by 

malfunction is excluded in consideration. 

2.6 Summary 

This chapter presented a preliminary study of wind turbine vibration data from 

two perspectives, time domain and frequency domain. To alleviate the impact of wind 

speed to wind turbine vibration, the data set is arbitrarily partitioned to three subsets 

according to three ranges of wind speed, [3.5m/s, 7m/s], [7m/s, 12m/s] and [12m/s, ∞]. 
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These three ranges of wind speed are selected based on the shape of power curve which is 

similar to the sigmoid function.  

Three approaches, the predictor importance analysis, global sensitivity analysis, 

and correlation coefficient analysis, were used to conduct quantitative analysis of the 

importance of parameters to wind turbine vibrations. Two parameters, the drive train 

acceleration and the tower acceleration, were used to study the wind turbine vibration. 

Rank values of the parameters selected for the data set were then derived by three 

different approaches. For the low wind speeds, e.g., between 3.5 m/s and 7m/s, the torque 

value and the torque rate of change were found to be meaningful parameters impacting 

the wind turbine vibration. For higher wind speeds, e.g., between 7 m/s and 12 m/s, the 

torque value and the blade pitch angle could potentially reduce the wind turbine 

vibrations. When wind speed was larger than 12 m/s, the blade pitch angle was suggested 

as the most dominant parameter that could potentially reduce the wind turbine vibrations. 

The results of frequency domain analysis provided another angle of investigating 

wind turbine vibration. Power spectrum is utilized to illustrate vibrations in this domain. 

Malfunctions of wind turbine vibration could be observed as a peak of power at high 

frequency in the power spectrum. Unfortunately, due to the limitation of data, 

information of frequency higher than 0.05 was lost and patterns in high frequency was 

invisible. However, based on the available information in the power spectrum and turbine 

status from wind farm, an assumption that wind turbine was operated in normal condition 

was made. Thus, vibration potentially caused by malfunction of components installed in 

wind turbine was excluded in the consideration of this study. 
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CHAPTER 3.  

MODELING WIND TURBINE VIBRATIONS BASED ON 

DATA DRIVEN APPROACH 

3.1 Introduction 

Wind energy was considered one of the most viable sources of sustainable energy. 

Its rapid growth in recent years has gained research attention aimed at investigating 

emerging problems. In the past, majority of these attentions were concentrated on 

domains such as wind energy conversion [10, 11], prediction of wind power [13], wind 

speed prediction [24, 45], wind farm layout design [3, 4, 5], and turbine monitoring [14, 

15]. Mitigating the vibrations of a wind turbine is another avenue in wind energy research 

since vibrations are considered as a critical factor that could potentially trigger material 

fatigue, increase number of component failures, and shorten life-cycle of some 

components. Thus, mitigating wind turbine vibration in order to increase turbine 

availability and reduce cost of maintenance is interested by wind energy industry and is 

deserved to be investigated. 

The past wind turbine vibration research has primarily focused on the building 

models based on first principles and simulation. Leithead et al. [17] studied dynamics of 

variable speed wind turbines and design of models to control wind turbines. Fadaeinedjad 

et al. [18] investigated the impact of voltage sag on vibration of the wind turbine tower. 

They used three simulation programs, TrubSim, FAST and Simulink, to model wind 

turbines. Murtagh et al. [19] investigated control wind turbine vibration by incorportaing 

a passive control device. However, the limitations of the previous research should also be 

considered. Firstly, conducting a laboratory experiment for a Megawatt-class turbine is 

challenging due to its large size. In addition, it was widely recognized that analysis of 

parametric models has limitations, as such models usually involve many assumptions, 

and therefore they might not adequately represent reality. With massive deployment of 



www.manaraa.com

27 
 

 
 

wind farms in recent years, both the performance and maintenance of wind turbines have 

grown in importance. Thus, models accurately portraying wind turbine vibrations were 

needed. 

Modeling turbine vibrations was complex, as many parameters were involved. A 

new approach designed to handle vibrations was needed. This chapter introduced data 

driven approaches to capture the dynamic equations of wind turbine vibration and 

establish accurate prediction models for wind turbine vibration. Five data-mining 

algorithms were used to model the relationships between the identified parameters and 

wind turbine vibrations, and the best one was selected for modeling and in-depth 

computational study. 

3.2 Wind-speed based scenarios  

In this study, the data set is further split into smaller subsets based on the 

following speed intervals [3.5 m/s, 5 m/s), [5 m/s, 6 m/s), [6 m/s,  7 m/s), [7 m/s,  8 m/s), 

[8 m/s,  9 m/s), [9 m/s,  10 m/s), [10 m/s,  11 m/s), [11 m/s, 12 m/s), and [12 m/s, 14 m/s]. 

Since each speed interval is narrow, the impact of the wind speed change can be 

neglected, and more accurate wind turbine vibration models can be built. 

3.3 Wavelet analysis 

Noisy data usually diminish accuracy of the models derived from such data. 

Wavelets are used to smooth the data and noise reduction before establishing vibration 

models. Wavelet analysis calls for the order and level of wavelet. The difference between 

the mean of the original value and the denoised value is used to select the best order and 

level. Comparative analysis is discussed to select the most appropriate combination of 

order and level Daubechies wavelets [46], namely DB7 Level 10, DB 7 Level 7, and DB 

5 Level 5. Data set from 10/1/2008 12:00:10 AM to 10/8/2008 12:00:00 AM has been 

used in the comparative analysis. Table 3.1 presents the difference between the mean of 
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the original drive train acceleration and the mean of the denoised drive train acceleration 

for the three wavelets.  

              Table 3.1 Difference between the mean of the original                                             
and the denoised drive train acceleration 

Wavelet Type DB7 Level 10 DB 7 Level 7 DB 5 Level 5 

Difference Between two Means 0.0092 0.0088 0.0004 
 

 In this study, no significant shift in the mean of acceleration is expected after 

denoising. According to Table 3.1, it is obvious that DB 5 Level 5 is better than other two 

transformations and thus it is selected. 

To demonstrate the value of wavelet analysis, two experiments have been 

conducted. Neural Network (NN) models were built for original data sets and denoised 

data by DB 5 level 5. The DB 5 with level 5 denoised only the drive train acceleration 

and tower acceleration data. Table 3.2 presents the training results for a NN model based 

on the [7 m/s, 8 m/s) data subset of Turbine 1. Table 3.3 presents the test results for the 

same data subset. Four metrics, the mean absolute error (MAE, Eq. 3.1), the standard 

deviation of mean absolute error (SD of MAE, Eq. 3.2), the mean absolute percentage 

error (MAPE, Eq. 3.3), and the standard deviation of MAPE (SD of MAPE, Eq. 3.4), are 

used to evaluate the results, where ˆiy is the predicted drive train (or tower acceleration) 

and iy is the observed value in the data set.  

Table 3.2 Training results of the neural network model 

Training MAE SD of MAE MAPE SD of MAPE 

Original Data Set 5.68 4.80 3.90 353.19 

Denoised Data Set  1.29 2.30 0.00 2.70 
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Table 3.3 Test results of the neural network model 

Test MAE Std of MAE MAPE Std of MAPE 

Original Data Set 5.57 4.74 0.19 2.35 

Denoised Data Set 1.25 2.11 0.04 0.63 
 

 Mean absolute error (MAE) = 
1

1 ˆ| |
n

i i
i

y y
n =

−∑    (3.1) 

           Standard deviation of MAE = 2

1 1

1 1ˆ ˆ(| | | |)
n n

i i i i
i i

y y y y
n n= =

− − −∑ ∑   (3.2) 

          Mean absolute percentage error (MAPE) = 
1

ˆ1 (| |) 100%
n

i i

i i

y y
n y=

−
×∑  (3.3) 

                Standard deviation of MAPE = 2

1 1

ˆ ˆ1 1(| | | |) 100%
n n

i i i i

i ii i

y y y y
n y n y= =

− −
− ×∑ ∑    (3.4) 

 

    Based on results in Table 3.2 and Table 3.3, it is obvious that denoising and 

smoothing data is beneficial for modeling. The large MAPE and SD of MAPE for the 

original dataset in Table 3.2 are caused by the small values in the training set and the 

nature of these two metrics. For example, some instances with values as small as 0.00002 

are contained. A small error (the difference between the observed and predicted value) , 

such as 2, results in a large MAPE of (3.3) and a large SD of MAPE in (3.4). 
 

3.4 Data-driven models 

     Data-driven models are used to represent the relationship between inputs, such 

as torque value, torque rate, wind speed and wind deviation, and outputs (the drive train 
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acceleration and tower acceleration). Such models differ from the physics-based 

functions, for example, the function describing the acceleration of a swing (see (Eq. 3.5)). 

 
2

2
02Acceleration cosd x x x t

dt
ω ω= = = −��  (3.5) 

Unlike the parametric models, the data-driven models do not require knowing in 

advance the function mapping inputs into an output (see (Eq. 3.6)).      

1 2 1 2( ),  [ , ,... , , ,.. ]n ny f x x x x x v v v= =K K        (3.6) 

where y is the drive train acceleration or the tower acceleration measured by 

accelerometers, xi are the non-controllable inputs (the wind deviation, wind speed), and vj 

are the controllable inputs (the torque value, torque rate, blade pitch angle, and so on). 

The function ( )f i is learned by data-mining algorithms. 

Before a data-driven model is built, the most suitable data-mining algorithm needs 

to be selected. In this section, the performance of five classifiers, Neural Network (NN) 

[41, 42, 43], Support Vector Machine (SVM) [47, 48], Boosted Tree [39, 40], Standard 

C&RT, and Random Forest [49], is evaluated using two metrics, MAE (Eq. 3) and 

MAPE (Eq. 3.3).  The data set, which is randomly selected across all wind speeds (Table 

2), is used for training and testing.  

The Neural Network (NN) is a biology-based computational model that is 

adaptive and robust. The Support Vector Machine, SVM, is used for classification and 

regression based on the concept of maximizing the margin between the data points of 

different classes. The last three data-mining algorithms are tree-based approaches. 

Boosted Tree applies the boosting method to regression trees. Standard C&RT, 

classification and regression tree, is a data-mining approach that builds an optimal tree 

structure to predict categorical or continuous variables. Random Forest is a data-mining 

algorithm composed of many decision trees, and it outputs the best values of an 

individual tree. 
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Table 3.4 and Table 3.5 illustrate the performance of the five classifiers for 

predicting the drive train acceleration and tower acceleration, respectively. The Neural 

Network (NN) model provides the lowest MAE and MAPE for both cases. Thus, NN 

model is selected as the most accurate model to predict wind turbine vibrations. 

Table 3.4 Performance of five classifiers for predicting drive train acceleration 

Drive Train Acceleration 

Classifier MAE MAPE 

NN 1.17 0.07 

SVM 8.64 0.27 

Standard C&RT 4.23 0.16 

Boosted Tree 3.20 0.20 

Random Forest 2.06 0.09 
 

Table 3.5 Performance of five classifiers for predicting tower acceleration 

Tower Acceleration 

Classifier MAE MAPE 

NN 4.54 0.11 

SVM 13.72 0.27 

Standard C&RT 10.86 0.22 

Boosted Tree 6.91 0.15 

Random Forest 5.26 0.11 
 

     All parameters used by the neural network model to extract models in Eqs. 

(3.7) - (3.8) are listed in Table 3.6.  

 1 1 1 1 1 2 3 4 1 2( ( 1), ( 2), ( 3), , , , , , )y f y t y t y t x x x x v v= − − −    (3.7) 

 2 2 2 2 1 2 3 4 1 2( ( 1), ( 2), ( 3), , , , , , )y f y t y t y t x x x x v v= − − −                   (3.8) 
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where 1y and 2y represent the drive train acceleration and the tower acceleration, 

respectively. The function ( )f i is learned by data-mining algorithms. 

Table 3.6 Feature descriptions 

Parameter Description 

y1 Drive train acceleration 

y2 Tower acceleration 

y1(t-1) Drive train acceleration at time t-1 

y1(t-2) Drive train acceleration at time t-2 

y1(t-3) Drive train acceleration at time t-3 

y2(t-1) Tower acceleration at time t-1 

y2(t-2) Tower acceleration at time t-2 

y2(t-3) Tower acceleration at time t-3 

x1 Torque change rate 

x2 Wind speed 

x3 Wind deviation 

x4 Blade pitch angle change rate 

v1 Torque value 

v2 Blade pitch angle 
 

3.5 Case study 

As the neural network outperforms the other four data mining algorithms based on 

the sample data set, it is introduced to extract non-parametric predictive models of wind 

turbine vibration from the industrial data, i.e., the data set of Turbine 1 after pre-

processing. In this study, data sets collected at two different turbines are used. The two 

data sets of are decomposed into subsets as described in Section 3.2. Each Turbine 1 data 

subset is then split into training and test data sets by random sampling. The training data 

set includes 2/3 of all data points and the test data set constitutes the remaining 1/3 data. 

The data subsets of Turbine 2 (external data sets) are applied to test the accuracy and 
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robustness of the models derived from Tribune 1 data. The parameters in Table 3.6 are 

selected to build models according to the functions (see Eq. (3.7) and (3.8)) learned by 

the neural network. Thus, two non-parametric models extracted from the data, one for the 

drive average train acceleration and another for the tower acceleration. 

Table 3.7 presents test results from predicting the average drive train and the 

tower acceleration for 18 different scenarios. The model performance for each speed 

range (Scenarios 1 through 9) is measured with four metrics, MAE (Eq. 3.1), Standard 

Deviation of MAE (Eq. 3.2), MAPE (Eq. 3.3) and Standard Deviation of MAPE (Eq. 

3.4).  

The results included in Table 3.7 indicate that the predictions for the drive train 

acceleration are accurate as most of the MAPE values are lower than 0.03, which means 

that the prediction accuracy higher than 97%. In addition, the low value of the standard 

deviation of MAPE indicates small variability of error relative to the mean error.  

The value of MAPE for tower acceleration oscillates about 0.07 which 

corresponds to 93% prediction accuracy.  Considering the complexity of the underlying 

relationships this prediction accuracy is acceptable.  One possible reason for the reduced 

prediction accuracy is that the impact of the rotor on the vibration of tower is less direct 

than that on the drive train.  
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Table 3.7 Test results for wind turbine vibration                                                          
produced by the neural network model 

Acceleration   Scenario Wind Speed MAE SD of MAE MAPE SD of MAPE 

 
 
 
 

Drive Train Acceleration 
 
 
 

 

Scenario. 1 [3.5m/s - 5m/s) 0.5782 0.9249 0.0184 0.0202 

Scenario. 2 [5m/s - 6m/s) 0.4752 1.4199 0.0191 0.1598 

Scenario. 3 [6m/s - 7m/s) 0.5154 1.3468 0.0133 0.0437 

Scenario. 4 [7m/s - 8m/s) 1.2393 2.0922 0.0246 0.0430 

Scenario. 5 [8m/s - 9m/s) 1.2382 2.2780 0.0195 0.0370 

Scenario. 6 [9m/s - 10m/s 1.5762 3.0296 0.0042 0.3567 

Scenario. 7 [10m/s - 11m/s) 1.8956 3.3790 0.0162 0.4512 

Scenario. 8 [11m/s - 12m/s) 1.7312 2.9588 0.0173 0.0313 

Scenario. 9 [12m/s - 14m/s] 1.2692 2.1304 0.0120 0.5831 

 
 
 
 

Tower Acceleration 
 
 
 

 

Scenario. 1 [3.5m/s - 5m/s) 3.2221 4.8278 0.0955 0.1011 

Scenario. 2 [5m/s - 6m/s) 2.7683 5.6060 0.0709 0.1563 

Scenario. 3 [6m/s - 7m/s) 1.7724 4.2603 0.0410 0.1406 

Scenario. 4 [7m/s - 8m/s) 3.9584 6.4616 0.0882 0.2911 

Scenario. 5 [8m/s - 9m/s) 3.4913 6.2439 0.0545 0.0894 

Scenario. 6 [9m/s - 10m/s 5.2208 11.0250 0.0634 0.0970 

Scenario. 7 [10m/s - 11m/s) 9.5497 25.4213 0.0916 0.1691 

Scenario. 8 [11m/s - 12m/s) 8.4061 16.9336 0.0738 0.1099 

Scenario. 9 [12m/s - 14m/s] 5.9573 9.3430 0.0473 0.0752 

 

The prediction performance of selected scenario, scenario 1 of Turbine 1, for both 

drive train and tower acceleration has been illustrated in scatter plots in Figure 3.1 to 

Figure 3.2 where the vertical axis represents the observed values and the horizontal axis 

represents the predicted ones. Figure 3.1 shows the prediction results of the first 200 

points based on the test data for scenarioc1 (Table 3.7) in testing the drive train 

acceleration. Figure 3.2 illustrates the performance of the first 200 points for scenario 1 

(Table 3.7) in testing the tower acceleration. Besides scatter plots, the run-charts, as 

shown in Figure 3.3 and Figure 3.4, were also included to display not only the prediction 

accuracy but also the time sequence of first 200 data points for testing both drive train 

acceleration and tower acceleration.  Scatter plots and run-charts that illustrated 

prediction performance of other scenarios can be obtained in Appendix A. 
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Figure 3.1 Scatter plot of the observed and predicted values of drive train acceleration for 
the first 200 points of turbine 1 in scenario 1 

 

Figure 3.2 Scatter plot of the observed and predicted values of tower acceleration for the 
first 200 points of turbine 1 in scenario 1 
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Figure 3.3 Run-chart of the observed and predicted values of drive train acceleration for 
the first 200 points of turbine 1 in scenario 1 

 

Figure 3.4 Run-chart of the observed and predicted values of tower acceleration for the 
first 200 points of turbine 1 in scenario 1 

Table 3.8 presents test results for predicting the two types of accelerations, the 

drive train acceleration and tower acceleration, of the models extracted from data set of 
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Turbine 1 by applying the data set of Turbine 2. In the prediction of the drive train 

acceleration of Turbine 2, the models maintain their performance. The mean of the 

MAPE for predicting the drive train acceleration is about 0.0221, which indicates that the 

mean accuracy of the model is about 97.79%. This result is quite similar to the test results 

of data set of Turbine 1. In predicting the tower acceleration of Turbine 2, the mean 

MAPE is about 0.0998, which means that the mean accuracy across all models is about 

91%. In this case, although its prediction accuracy drops slightly compared to the 

previous case (93%), the models are accurate for the type of the complex problem 

considered in this research. Thus, the results demonstrate that the models are accurate 

enough to model the relationships between the parameters and the targets (the drive train 

acceleration and the tower acceleration). 

Table 3.8 Test results for wind turbine vibration of data set of turbine 2 

Acceleration   Scenarios Wind Speed MAE SD of MAE MAPE SD of MAPE 

 
 
 
 

Drive Train Acceleration 
 
 
 

 

Scenario. 1 [3.5m/s - 5m/s) 1.0903 2.9562 0.0240 0.0447 

Scenario. 2 [5m/s - 6m/s) 0.6721 1.5771 0.0171 0.0311 

Scenario. 3 [6m/s - 7m/s) 0.7282 1.5546 0.0158 0.0271 

Scenario. 4 [7m/s - 8m/s) 1.2036 2.1324 0.0208 0.0341 

Scenario. 5 [8m/s - 9m/s) 1.2575 2.5230 0.0175 0.0326 

Scenario. 6 [9m/s - 10m/s 1.7197 2.9600 0.0217 0.0339 

Scenario. 7 [10m/s - 11m/s) 2.3290 3.6028 0.0264 0.0377 

Scenario. 8 [11m/s - 12m/s) 2.6222 3.9620 0.0276 0.0398 

Scenario. 9 [12m/s - 14m/s] 3.0535 4.4006 0.0275 0.0377 

 
 
 
 

Tower Acceleration 
 
 
 

 

Scenario. 1 [3.5m/s - 5m/s) 6.1216 10.4774 0.0985 0.1302 

Scenario. 2 [5m/s - 6m/s) 5.3249 9.3070 0.0896 0.1835 

Scenario. 3 [6m/s - 7m/s) 4.8622 8.6557 0.0784 0.7400 

Scenario. 4 [7m/s - 8m/s) 4.4078 7.1761 0.0971 0.1391 

Scenario. 5 [8m/s - 9m/s) 3.5889 8.4652 0.0687 0.1370 

Scenario. 6 [9m/s - 10m/s 5.7685 8.0605 0.0998 0.0919 

Scenario. 7 [10m/s - 11m/s) 9.2428 12.4625 0.1130 0.1039 

Scenario. 8 [11m/s - 12m/s) 12.7809 12.9038 0.1400 0.1154 

Scenario. 9 [12m/s - 14m/s] 11.9156 11.6100 0.1128 0.1000 
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The data in scatter plots, Figure 3.5 and Figure 3.6, and run-charts, Figure 3.7 and 

Figure 3.8, illustrate prediction performance of scenario 1 of Turbine 2. For better 

visualization of the results, only the first 200 points are depicted in the figures. Each 

vertical axis represents the observed values and the horizontal the predicted values of the 

drive train acceleration (Figure 3.1) and the tower acceleration (Figure 3.2). Scatter plots 

and run-charts of other scenarios were are listed in Appendix B. 

 

Figure 3.5 Scatter plot of the observed and predicted values of the drive train acceleration 
for the first 200 points of turbine 2 in scenario 1 
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Figure 3.6 Scatter plot of the observed and predicted values of the tower acceleration for 
the first 200 points of turbine 2 in scenario 1 

 

Figure 3.7 Run-chart of the observed and predicted values of the drive train acceleration 
for the first 200 points of turbine 2 in scenario 1 
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Figure 3.8 Run-chart of the observed and predicted values of the tower acceleration for 
the first 200 points of turbine 2 in scenario 1 

In this study, based on results provided by two tables, Table 3.7 and Table 3.8, the 

MAPE of the models for predicting both two accelerations indicate that modeling the 

wind turbine vibration with data-driven models is feasible and the accuracy of prediction 

is acceptable.  

3.6 Summary 

This chapter introduced a methodology to model wind turbine vibration based on 

a data driven perspective. In algorithm selection, five data mining algorithms were 

compared in model extraction from data sets collected at two randomly selected wind 

turbines. The models have been extensively tested and the best model, derived by the 

neural network algorithm, was applied to 18 data sets (scenarios). Performance of all 

models was evaluated using different metrics (MAE, SD of MAE, MAPE and SD of 

MAPE). The ultimate goal of this research was to drive an accurate model to predict 

vibrations of the drive train acceleration and tower acceleration. Such models will play 
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important role in devising control strategies, like minimizing wind turbine vibrations. 

Since these models are non-parametric, in general, conventional optimization algorithms 

cannot be applied to solve them, rather evolutionary algorithms are needed. Such 

computational intelligence approaches will be introduced in the next chapter. 
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CHAPTER 4. 

OPTIMIZATION OF WIND TURBINE PERFORMANCE WITH 

DATA DRIVEN MODELS 

4.1 Introduction 

The interest in renewable energy has increased in recent years due to 

environmental concerns and growing awareness of the limited supply of fossil fuels. The 

anticipated increase in the cost of electricity generated from fossil fuels due to carbon 

taxation has become a catalyst in the quest for clean energy. Wind energy has been the 

most successfully commercialized among all forms of renewable energy [50]. Research 

in wind energy has significantly intensified in power generation, energy conversion, wind 

farm design and so on in the recent years. Optimization has been considered as one 

critical issue tightly involved in wind energy research areas. Boukhezzar et al. [51] 

designed a non-linear controller for optimizing the power of the DFIG generator. Abdelli 

et al. [52] applied a multi-objective genetic algorithm to optimize the efficiency of a 

small scale turbine. 

The goal of this paper is to develop models optimizing wind turbine performance 

in three objectives, maximization of the power produced by a wind turbine, and reduction 

of vibrations of the turbine’s drive train and tower. 

Numerous studies of wind power models have been reported in the literature [51-

53]. A passive control method using a tuned mass damper to mitigate vibrations of the 

blades and tower of a wind turbine was presented in [19]. The research reported in [20] 

discussed the estimation of aeroelastic damping of operational wind turbine modes based 

on experiments. The majority of the published research falls into parametric and physics-

based models. This paper illustrates non-linear and non-parametric models for 

optimization of wind power and vibration using a data-driven approach. Such an 
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approach has been successfully applied to optimize power plants and industrial processes 

[54]. 

The focus of this chapter is on vibrations attributed to the control of wind 

turbines, e.g., control of the generator torque and blade pitch. Two parameters, drive train 

acceleration and tower acceleration, are selected to represent vibrations of the drive train 

and tower. Two generalized data-driven models of wind turbine vibrations are developed, 

one to predict the drive train accelerations and the other to predict the tower 

accelerations. The power output is also modeled by a similar methodology. Neural 

network [41, 42, 43] is applied to extract these data-driven models from industrial (wind 

turbine) data. The three models are then integrated into a multi-objective optimization 

model [55]. As the models are nonparametric and nonlinear, obtaining analytical form 

solutions is difficult, and therefore an evolutionary strategy algorithm [56, 57, 58] is used 

to solve them. Different control preferences lead to numerous control strategies. 

The data used in this research was obtained from a large (150MW) wind farm, 

and its sampling frequency is 0.1 Hz. Since the frequency of wind turbine vibrations is 

higher than 0.1 Hz, the information loss due to the low (0.1 Hz) frequency of available 

data has been reflected in the research results. To address the information loss, a 1-min 

(lower frequency) data set is derived from the 0.1 Hz (10-s) data set. Computational 

experiments with the two data sets, i.e., 10-s and 1-min, demonstrate a potential for 

further reduction of turbine vibrations. Due to the limited data frequency, this chapter 

investigates the potential for vibration reduction by adjusting certain controllable 

parameters, such as blade pitch angle and generator torque. Industrial implementation of 

the approach proposed in this paper calls for higher frequency data. 
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4.2 Modeling wind turbine vibrations and power output 

4.2.1 Data description 

Two types of data sets, 10-s data and 1-min data of a wind turbine, are used in this 

research. The 10-s data was collected from a SCADA system, and the 1-min data set was 

derived by averaging the values of all parameters across each 60-s period from the 10-s 

data set. The total length of each data set is two months. The SCADA system contains 

values of more than 120 parameters; however, only certain parameters that could be 

potentially related to wind turbine vibrations and their power output were selected based 

on the domain expertise and past studies in wind energy. Tables 4.1 and 4.2 demonstrate 

the general format of the data sets used in this research. 

Table 4.1 Sample data set of 10-s data collected from SCADA system 

Time Torque ……. Drive Train Acc Drive Train Acc (t-1) 

19/10/08 3:01:10 PM 42.1586 ……. 63.2651 61.5034 

19/10/08 3:01:20 PM 45.5093 ……. 59.9151 63.2651 

……. ……. ……. ……. ……. 

Table 4.2 Sample 1-min data computed based on the 10-s data 

Time Torque ……. Drive Train Acc Drive Train Acc (t-1) 

10/19/08 3:01 PM 40.7994 ……. 59.7646 59.5475 

10/19/08 3:02 PM 36.9941 ……. 54.8406 56.1781 

……. ……. ……. ……. ……. 

 

The columns in Tables 1 and 2 represent the parameters related to wind turbine 

vibrations and the power output. All data is time stamped. 
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4.2.2 Data pre-processing 

Data pre-processing is critical to the data mining for correctness and accuracy of 

the results. Some of the data errors may have been caused by sensor failures, transmission 

errors, and failures of various subsystems. The errors usually appear as data exceeding 

physical constraints or missing values. All incorrect data was deleted from the data sets 

used in this paper. 

4.2.3 Wind turbine vibration model 

In this chapter, understanding and modeling vibrations of a wind turbine from the 

operational data collected from the turbine is presented. Two significant vibration sources 

are considered: vibrations due to the air passing through the wind turbine and vibrations 

due to the forces originating with the control system that affects the torque and the blade 

pitch angle. The values of the drive train acceleration recorded by the SCADA system are 

used to represent the vibration of the drive train of a wind turbine, while the tower 

vibration is represented by the acceleration measurements from the tower. The 

parameters used in this section are selected based on data analysis and domain 

knowledge. 

In this research, drive train part acceleration is measured by a sensor installed at 

the bottom back of a nacelle. Since two identical drive train acceleration values are 

reported by the SCADA system, an average value of the two is used in this paper. The 

vibration of the drive train system is expressed in (4.1). 

 1 1 1 1 1 1 1 2 2( ) ( ( 1), ( ), ( 1), ( ), ( 1), ( ), ( 1))y t f y t v t v t x t x t x t x t= − − − −          (4.1) 

where all parameters are time t dependent, and 1y represents the drive train 

vibrations; 1v is the wind speed, 1x is the torque, 2x is the blade pitch angle, and 1t − is the 

previous sampling time period. Parameter selection is mainly based on domain 

knowledge. Details are presented in Table 8. In addition, the symbol 1( )f i  represents 

model (4.1) derived from the data with a neural network algorithm. 
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The sensor to measure tower acceleration is located near the connection of a 

nacelle and a tower. The model of a tower vibration is presented in (4.2). 

 2 2 2 1 1 1 1 2 2( ) ( ( 1), ( ), ( 1), ( ), ( 1), ( ), ( 1))y t f y t v t v t x t x t x t x t= − − − −          (4.2) 

The parameters of model (4.2) are identical to those in model (4.1) with 2y

representing the tower vibrations. The symbol 2 ( )f i is used to represent model (4.2) 

extracted with a neural network. 

In models (4.1) and (4.2), the torque value 1x at time t  and blade pitch angle 2x at 

time t  are considered as controllable parameters used to realize the potential for 

controlling vibrations of a wind turbine. Wind speed at time t and the past states of all 

parameters are considered as non-controllable parameters. 

4.2.4 Power output model 

It is known that the power extracted from the wind is expressed as the nonlinear 

expression in (4.3). 

 2 31 ( , )
2 pP R C vρπ λ β=           (4.3) 

where the air flow density is represented by ρ , R is the rotor radius, v is the wind 

speed, and ( , )pC λ β  is the power coefficient function of the blade pitch angle β and the 

tip-speed ratio λ . Model (4.3) does not exactly match the actual power curve illustrated 

in Figure 4.1. In this power curve, a given wind speed value is mapped onto a range of 

power values for a variety of reasons, including sensor errors and faults of various types; 

for example, a small error in wind speed v could result in a large error of the power 

output due to the cube relationship. To model actual power curves, neural networks, k-

NN (k nearest neighbor), and other data-mining algorithms can be used. In this paper, a 

neural network model 3( )f i is used to estimate power output, and it is expressed in (4.4). 

 3 3 1 1 1 1 2 2( ) ( ( ), ( 1), ( ), ( 1), ( ), ( 1))y t f v t v t x t x t x t x t= − − −           (4.4) 

The notation used here is identical to the notation of model (4.1).  
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Figure 4.1 Power curve of a 1.5 MW turbine 

4.2.5 Validation of the models 

The same data denoising procedure introduced in Chapter 3 is applied to filter the 

noisy data of the drive train acceleration and tower acceleration here. To build data-

driven models, the 10-s and 1-min data sets are divided into a training data set (2/3 of all 

data) and a test data set (1/3) of all data. In the 10-s data set, there are a total of 204894 

instances, and in the 1-min data there are a total of 34149 instances. Each training data set 

is used to train a neural network, while the test data set is used to test the accuracy of 

data-derived models. Four metrics (4.5) – (4.8) are used to evaluate the quality of models. 

 Mean absolute error (MAE) = 
1

1 ˆ| |
n

i i
i

y y
n =

−∑    (4.5) 

           Standard deviation of MAE = 2

1 1

1 1ˆ ˆ(| | | |)
n n

i i i i
i i

y y y y
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          Mean absolute percentage error (MAPE) = 
1

ˆ1 (| |) 100%
n

i i

i i

y y
n y=

−
×∑  (4.7) 

                Standard deviation of MAPE = 2

1 1

ˆ ˆ1 1(| | | |) 100%
n n

i i i i

i ii i

y y y y
n y n y= =

− −
− ×∑ ∑    (4.8) 

Table 4.3 presents the test results of three neural network (NN) models extracted 

from the 10-s data set. The mean value of the drive train acceleration in this data set is 

67.24 and the standard deviation (SD) of the drive train acceleration is 36.81. As shown 

in Table 4.3, the MAE of the drive train acceleration predicted by the NN model is 1.27, 

the corresponding MAPE is 0.02, which means that the model is 98% accurate. For the 

tower acceleration, the mean value of the tower acceleration is 72.83 and the SD is 45.40. 

The MAE in predicting tower acceleration is 4.73 and the SD is 8.92. The MAPE is 0.06, 

i.e., the model is 94% accurate. Although the MAPE is quite impressive, the SD of 

MAPE, which equals 0.10, is somewhat large. This indicates that the accuracy of the 

model predicting tower acceleration is not steady. However, considering the complexity 

of the tower acceleration itself, this result is acceptable for tower vibration analysis. The 

mean value of the power generated is 633.83 and the SD is 460.36. The MAE of the 

model predicting power is 9.86. The corresponding MAPE for the power prediction is 

0.03, i.e., the model is 97% accurate. 

Table 4.3 Test results of the NN models for 10-s data 

Predicted Parameter MAE SD of MAE MAPE SD of MAPE 

Drive train acceleration 1.27 2.52 0.02 0.03 

Tower acceleration 4.73 8.92 0.06 0.10 

Generated power 9.86 13.78 0.03 0.08 
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Figures 4.2 to 4.4 illustrate the first 50 predicted and observed values of the 10-s 

test data set for the three models: drive train acceleration (Figure 4.2), tower acceleration 

(Figure 4.3), and power (Figure 4.4). 

 

Figure 4.2 The first 50 test points of the drive train acceleration for 10-s data 

 

Figure 4.3 The first 50 test points of the tower acceleration for 10-s data 
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Figure 4.4 The first 50 test points of the power output for 10-s data 

The test results for three models extracted from the 1-min data set are included in 

Table 4.4. The MAE of the drive train acceleration is 0.77, and the MAPE of 0.01 implies 

a 99% accuracy of the model. For the model to predict the tower acceleration, the MAPE 

is 0.03, i.e., the model is 97% accurate. The MAPE of the model predicting the generated 

power is 0.03 (97% model accuracy). Although the model accuracy is impressive, the 

standard deviation is relatively high. The results indicate that even though the models can 

quite accurately predict acceleration and power output, some predicted instances could 

involve a significant error. 

Table 4.4 Testing results of the NN models for 1-min data 

Predicted Parameter MAE SD of MAE MAPE SD of MAPE 

Drive train acceleration 0.77 1.58 0.01 0.01 

Tower acceleration 2.76 7.97 0.03 0.04 

Generated power 8.99 13.83 0.03 0.15 
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Figure 4.5 presents the first 50 points of the observed and predicted values of the 

drive train accelerations. Figure 4.6 illustrates the first 50 points for the tower 

acceleration, and Figure 4.7 shows the power prediction results.   

 

Figure 4.5 The first 50 test points of the drive train accelerations for 1-min data 

 

Figure 4.6 The first 50 test points of the tower acceleration for 1-min data 
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Figure 4.7 The first 50 test points of the power output 1-min data 

4.3 Multi-objective optimization model 

In modeling vibrations and power output, torque and blade pitch angle are 

considered as controllable parameters. Parameters such as wind speed and past states of 

non-controllable parameters serve as inputs to the data-driven models. Both the generator 

torque and the blade pitch angle impact vibrations of the drive train and the tower.  

In the model considered in this paper, the drive train acceleration, the tower 

acceleration, and the inverse of power output are the three objectives to be minimized. 

Solutions of this model become control strategies for the wind turbine. This multi-

objective minimization model is formulated in (4.9). 

 

1 2 3

1 1 1 1 1 1 1 2 2

2 2 2 1 1 1 1 2 2

3 3 1 1 1 1 2 2

min( , , )
 

( ) ( ( 1), ( ), ( 1), ( ), ( 1), ( ), ( 1))

( ) ( ( 1), ( ), ( 1), ( ), ( 1), ( ), ( 1))

( ) ( ( ), ( 1), ( ), ( 1), ( ), ( 1))

 m

Obj Obj Obj
subject to

y t f y t v t v t x t x t x t x t

y t f y t v t v t x t x t x t x t

y t f v t v t x t x t x t x t

= − − − −

= − − − −

= − − −

1

2

ax{0,currentSettings 50} ( ) min{100,currentSettings 50}
max{ 5,currentSettings 5} ( ) min{15,currentSettings 5}

x t
x t

− ≤ ≤ +
− − ≤ ≤ +
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where 1 1( )Obj y t= , 2 2 ( )Obj y t= and 3 31/ ( )Obj y t=  are the three objectives to be 

minimized. 

Table 8 lists all parameters used in model (4.9). The first three parameters in 

Table 8 represent the three objectives to be minimized. Two controllable parameters, 

1( )x t and 2 ( )x t , are the torque and the blade pitch angle at time t. The remaining variables 

on the list in Table 4.5 are the non-controllable parameters at time t and t -1.  

Table 4.5 Description of parameters 

Parameter Description 

y1(t) Average drive train acceleration at time t 

y2(t) Tower acceleration at time t 

y3(t) Generated power at time t 

y1(t-1) Average drive train acceleration at time t-1 

y2(t-1) Tower acceleration at time t-1 

x1(t) Generator torque at time t 

x1(t-1) Generator torque at time t-1 

x2(t) Blade pitch angle at time t 

x2(t-1) Blade pitch angle at time t-1 

v1(t) Wind speed at time t 

v1(t-1) Wind speed at time t-1 
   

The two inequality constraints in model (4.9) impose the upper and lower bounds 

on the two controllable parameters, i.e., they define the feasible ranges for these 

parameters. The range for the torque value x1(t) at time t is between 

max{0,CurrentSetting 50}−  and min{100,CurrentSetting 50}+ . The torque value was 

normalized in the interval [0, 100%]. The change of the torque value in two consecutive 

time intervals (10-s or 1-min) is limited to 50% of the maximal torque. This value is 

determined by considering the turbine specifications and realistic control. Based on 

manufacturing specifications, the generator torque is limited to 10090 Nm, and the 
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maximum change rate of the torque is 4500 Nm/s, which corresponds to 45% of the 

maximum torque per second. The average blade pitch angle 2 ( )x t at time t is in the range 

max{ 5,CurrentSetting 5}− −  and min{15,CurrentSetting 5}+ . The values of the blade 

pitch angle change in the interval [-5o, 15o]. The values were determined based on the 

maximum and minimum value of the blade pitch angle in the data set considered in this 

research. The maximum one time (10-s or 1-min) change of the blade pitch angle is fixed 

at 5o.  

Table 4.6 provides correlation coefficients [24] between controllable parameters 

and the three parameters considered as the model objectives, i.e., drive train acceleration, 

tower acceleration, and power. Although the relationship between these parameters is 

nonlinear, the linear relationship expressed with the correlation coefficient provides 

certain insights into dependencies among them. As illustrated in Table 4.6, torque and 

blade pitch angle are correlated to a different degree to the three parameters in the 

model’s objective. These correlation coefficients indicate that changing the values of the 

torque and the blade pitch angle impacts power output, drive train acceleration and tower 

acceleration simultaneously. Thus, optimization of the trade-off between vibrations and 

power becomes a challenge. 

Table 4.6 Correlation coefficients between turbine parameters 

Parameter Blade pitch 
angle Torque  Power 

produced 
Tower  

acceleration 
Drive train  
acceleration 

Blade pitch 
angle 1.00 0.43 0.44 0.46 0.39 

Torque  0.43 1.00 0.99 0.77 0.90 

Power produced 0.44 0.99 1.00 0.77 0.90 

Tower 
acceleration 0.46 0.77 0.77 1.00 0.83 

Drive train 
acceleration 0.39 0.90 0.90 0.83 1.00 
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To recognize the importance of the three model objectives in model (4.9), a 

weighted sum of these objectives is presented in (4.10). The weights indicate different 

control preferences.  

 

1 1 2 2 3 3

1 1 1 1 1 1 1 2 2

2 2 2 1 1 1 1 2 2

3 3 1 1 1 1 2

min ( ( ) ( ) (1/ ( )))
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y t f v t v t x t x t x

+ +
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= − − − −

= − − 2

1

2
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t x t

x t
x t

−

− ≤ ≤ +
− − ≤ ≤ +

    (4.10) 

The notation is the same as in model (4.9). The weight assignment to the 

objectives serves as a mechanism for solution selection among many non-dominant 

solutions contained in the Pareto set.  

4.4 Solving the multi-objective optimization model 

4.4.1 Strength Pareto Evolutionary Algorithm 

Model (4.9) is learned by a neural network rather than provided in an analytical 

form. To solve this multi-objective minimization model, evolutionary algorithms are the 

most natural choice. Here a particular evolutionary strategy (ES) algorithm, the Strength 

Pareto Evolutionary Algorithm (SPEA) [56], is used to solve model (4.9). The steps of 

the SPEA are presented next [56]. 

1. Initialize three sets, parent set ( pS ), offspring set ( oS ) and elite set ( eS ). 

Generate cμ  individuals (solutions) randomly to conduct the first generation of 

population. 

2. Repeat until the stopping criteria (number of generations, N ) is satisfied 

2.1. Search the best non-dominated solutions in oS . Add all non-dominated 

solutions to eS .  
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2.2. Search and delete all dominated solutions in eS . 

2.3. Apply a clustering technique to reduce the size of eS , if eS is too large.  

2.4. Assign fitness to solutions in eS and oS . 

2.5. Apply a binary tournament selection to select pμ  parents from the o eS S∪ to 

form a population of parents, and store this population in pS . 

2.6. Recombine two parents from pS to generate a new population. 

2.7. Mutate cμ individuals in oS by the mutation operator and assign fitness values 

to them. 

3. Check number of generations; if it equals N , then Stop. 

The solutions to the multi-objective minimization model (4.9), the torque value 

and the blade pitch angle, are encoded as vectors. These solutions are treated as 

individuals defined as ( , )i ix σ at the thi generation, where 1 2[ ( ), ( )]i i i Tx x t x t= and 

1 2[ , ]i i i Tσ σ σ= . The elements 1 ( )ix t  and 2 ( )ix t of the solution vector ix represent the torque 

and the blade pitch angle at the ith generation. The parameter iσ represents the vector of 

standard deviations of the normal distribution with mean equal to zero. In this vector, 1
iσ

and 2
iσ  are the standard deviations associated with torque and blade pitch angle. Two 

uniform distributions, [0.4,4]U and [0.2,2]U , are applied to initialize the values of 

elements in the vector of standard deviations iσ .  

Recombination of parents in SPEA is expressed in (4.11): 

 ( , )
2 2
p p

i i
j j

j S j S

x σ
∈ ∈
∑ ∑

              (4.11) 

where pS denotes the parent set.  

      Eq. (4.11) implies that every two selected individuals in the parent population 

are recombined to produce a child. Another key part of SPEA is the mutation operator. 

Individuals in this research are mutated using the two equations (4.12) and (4.13). 

    1 2(0, ) (0, ) (0, ) (0, )[ , ]N N N Ni i e eτ τ τ τσ σ ′ ′+ += i              (4.12) 
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 (0, )i i ix x N σ= +          (4.13) 

where (0, )N τ ′  is a normal distribution with the mean equal to 0 and a standard 

deviation of τ ′ . (0, )kN τ is another normal distribution with the mean 0 and standard 

deviation equal τ for 1, 2k = . In Eq. (13), (0, )iN σ is also a normal distribution but with 

a mean of 0 and the standard deviation computed from Eq. (12). 

4.4.2 Tuning parameters of the evolutionary strategy 

algorithm 

Numerous SPEA parameters need to be determined ahead of computation. In this 

research, parameters such as τ , τ ′ , tournament size, and the number of parents used in 

recombination, are arbitrarily selected, as they do not significantly impact computational 

results. The value of τ is 0.5, τ ′  = 0.3536, the tournament size is four, and the number of 

recombined parents is two. Besides these parameters, the value of two other parameters 

needs to be determined: the selection pressure and the population size. The selection 

pressure is the ratio of the parent set size divided by the size of the offspring set (see 

(4.14)) 

 SP = /p offN N          (4.14) 

whereSP = the selection pressure, pN = the size of parent set ( pS ) , and offN = the 

size of offspring set ( oS ). 

Two experiments are conducted to tune selection pressure and population size of 

the evolutionary strategy (ES) algorithm applied to 10-s and 1-min data sets. The first 

experiment was established based on an instance randomly selected from the 10-s data 

set. The second experiment was implemented based on an instance that has the same time 

range as the instance of experiment one from the 1-min data set. Table 4.7 presents 

details of the two instances used in two experiments. 
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Table 4.7 Two experiments for tuning selection pressure and population size 

One instance selected from the 10-s data set 
of Experiment 1 

One instance selected from the 1-min data set 
of Experiment 2 

Time 10/18/08 10:55:10 
PM 

Time 10/18/08 10:55 PM 

x1(t) 100.93 x1(t) 100.43 

x1(t-1) 100.06 x1(t-1) 100.58 

v1(t) 12.32 v1(t) 14.42 

v1(t-1) 14.11 v1(t-1) 14.96 

y3(t) 1484.47 y3(t) 1481.49 

y2(t) 164.64 y2(t) 169.72 

y2(t-1) 167.20 y2(t-1) 170.22 

x2(t) 6.77 x2(t) 10.68 

x2(t-1) 8.21 x2(t-1) 11.41 

y1(t) 147.43 y1(t) 142.68 

y1(t-1) 139.09 y1(t-1) 144.27 
 

Ten different selection pressures are considered: SP-1 (2parents/2offspring), SP-2 

(2parents/4offspring), SP-3 (2parents/6offspring), SP-4 (2parents/8offspring), SP-5 

(2parents/10offspring), SP-6 (2parents/12offspring), SP-7 (2parents/14offspring), SP-8 

(2parents/16offspring), SP-9 (2parents/18offspring) and SP-10 (2parents/20offspring). 

Three extreme cases of the selection pressure accelerating the convergence of the ES 

algorithm are considered, minimizing the drive train acceleration only (Case 1), 

minimizing the tower acceleration only (Case 2), and minimizing the inverse of power 

only (Case 3). These three extreme cases can be expressed with three weight assignments 

used in model (10). In Case 1, w1 = 1, w2 = 0 and w3 = 0; in Case 2, w1 = 0, w2 = 1 and w3 

= 0; and in Case 3, w1 = 0, w2 = 0 and w3 = 1. 

Table 4.8 illustrates the convergence of the ES algorithm as a function of the 

selection pressure (SP) for experiment 1. To determine the best SP, the evolutionary 

strategy algorithm has run for 1500 generations for each selection pressure. As shown in 
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Table 4.8, the fastest average convergence of the ES algorithm corresponds to SP-9. The 

ES algorithm converges in Case 1 at the 106th generation. It is observed that the ES 

algorithm converges at the 180th and 41st generation in Case 2 and Case 3, respectively. 

The selection pressure SP-9 in Table 4.8 involves the smallest average number of 

generations at 109.   

Table 4.8 Convergence for 10 values of the selection pressure in experiment 1 

Selection Pressure 
Case 1  
Convergence 
Speed 

Case 2  
Convergence 
Speed 

Case 3  
Convergence 
Speed 

Average 
Convergenc
e Speed 

SP-1 
(2parents/2offspring) 968 1420 163 850.33 

SP-2 
(2parents/4offspring) 637 1170 478 761.67 

SP-3 
(2parents/6offspring) 97 974 96 389.00 

SP-4 
(2parents/8offspring) 97 974 96 389.00 

SP-5 
(2parents/10offspring
) 

134 419 59 204.00 

SP-6 
(2parents/12offspring
) 

108 736 60 301.33 

SP-7 
(2parents/14offspring
) 

110 277 35 140.67 

SP-8 
(2parents/16offspring
) 

87 214 47 116.00 

SP-9 
(2parents/18offspring
) 

106 180 41 109.00 

SP-10 
(2parents/20offspring
) 

171 306 15 164.00 
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Table 4.9 illustrates the convergence for different values of the selection pressure 

in experiment 2 with the best convergence attained for SP-10. The ES algorithm in Case 

1 and Case 2 converges at the 36th generation and in Case 3 at the 55th generation. 

Table 4.9 Convergence for 10 values of the selection pressure in experiment 2 

Selection Pressure 
Case 1  
Convergence 
Speed 

Case 2  
Convergence 
Speed 

Case 3  
Convergence 
Speed 

Average 
Convergence 
Speed 

SP-1 
(2parents/2offsprin
g) 

190 190 253 211.00 

SP-2 
(2parents/4offsprin
g) 

466 466 31 321.00 

SP-3 
(2parents/6offsprin
g) 

258 258 178 231.33 

SP-4 
(2parents/8offsprin
g) 

35 35 80 50.00 

SP-5 
(2parents/10offspri
ng) 

99 99 52 83.33 

SP-6 
(2parents/12offspri
ng) 

292 292 48 210.67 

SP-7 
(2parents/14offspri
ng) 

149 149 28 108.67 

SP-8 
(2parents/16offspri
ng) 

83 83 41 69.00 

SP-9 
(2parents/18offspri
ng) 

15 15 118 49.33 

SP-10 
(2parents/20offspri
ng) 

36 36 55 42.33 
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In addition to the analysis of the selection pressure, two population sizes for each 

experiment are evaluated, where one of them is five times larger than the base population. 

For example, the two populations in experiment 1 are denoted as PS1 (2 parents/18 

offspring) and PS2 (10 parents/90 offspring). Larger population sizes are not considered 

here due to the excessive computational cost of the ES algorithm. 

Table 4.10 illustrates the convergence of the ES algorithm for two population 

sizes of experiment 1. As shown in Table 4.10, the fastest convergence is attained for 

population size PS2 with 10 parents and 90 offspring. The minimum inverse of power 

(Case 3) is attained at the 1st generation. The latter is due to the fact that the maximum 

torque value was included in the initial solution. In Case 1 and Case 2, the ES algorithm 

converges at the 18th and 51st generation.  In this experiment, the average number of 

generations was much lower than for the case with a population size of 2 parents and 18 

offspring (see Table 4.7). 

Table 4.10 Convergence of the ES algorithm for two populations of experiment 1 

Population Size 
Case 1  

Convergence 
Speed 

Case 2  
Convergence 

Speed 

Case 3  
Convergence 

Speed 

Average 
Convergence 

Speed 

PS1(2parents/18 
offspring) 

106 180 41 109.00 

PS2(10parents/90
offspring) 18 51 1 23.33 

 

Table 4.11 shows that the population with 2 parents and 20 offspring leads to the 

best performance in experiment 2. For this population size, the ES algorithm converges at 

the 36th generation in Case 1.  It also converges at the 36th generation in Case 2, and in 

Case 3 at the 55th generation.  
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Table 4.11 Convergence of the ES algorithm for two populations of experiment 2 

Population Size 
Case 1  

Convergence 
Speed 

Case 2  
Convergence 

Speed 

Case 3  
Convergence 

Speed 

Average 
Convergence 

Speed 

PS1(2parents/20 
offspring) 

36 36 55 42.33 

PS2(10parents/100
offspring) 49 49 137 78.33 

 

4.5 Computational results  

Three types of computational results will be discussed in this section. First, the 

results of a single-point optimization based on the 10-s data set are introduced. Then, the 

optimization results over a period of 11-min (multi-point) are presented for three extreme 

cases, which are defined later in this section. Finally, a comparison between the 

optimization for the 10-s data set and 1-min data set is discussed to demonstrate the 

impact on mitigating wind turbine vibrations over a 10-min period. 

4.5.1 Single-point optimization  

Optimizing a trade-off between wind turbine vibrations and the power output 

produces a set of non-dominant solutions. An instance of the 10-s data set shown in Table 

10 is selected to compute the solution set. Table 4.12 presents a partial solution set for 

this instance. As presented in Table 4.7, the original average drive train acceleration is 

147.43, the original tower acceleration is 164.64 and the original generated power is 

1484.47. Each solution in Table 4.12 represents different settings of torque value (TV) 

and blade pitch angle (BPA). For example, Solution 4 in Table 4.12 shows that for the 

torque value (TV) of 67.6 and blade pitch angle (BPA) at 15, the average drive train 

acceleration is reduced from 147.43 to 136.71, and the tower acceleration could be 

reduced from 164.64 to 120.34. However, the turbine generated power is reduced from 



www.manaraa.com

63 
 

 
 

1484.47 to 1031.21. Under this control strategy, the respective gains of the drive train 

acceleration and the tower acceleration are 7.27% and 26.90%, respectively. However, 

the reduced vibrations also reduced the power output by -30.53%. Solution 7 illustrates a 

modest gain in tower accelerations. As presented in Table 4.12, the tower accelerations 

are reduced from 164.64 to 119.41, i.e., the gain is 27.48%. Simultaneously, the drive 

train acceleration is reduced from 147.43 to 136.98, and the turbine generated power is 

reduced from 1484.47 to 1005.11. The respective gains are 7.09% and -32.29%. 

Table 4.12 Partial solution set generated by the evolutionary strategy algorithm 

Solution 
No. 

Solution 
(x1(t), 
x2(t)) 

y1(t) 
Gain of 

y1(t) 
y2(t) 

Gain of 
y2(t) 

y3(t) 
Gain of 

y3(t)  

1 (90.0, 
8.81) 136.86 7.17% 160.61 2.45% 1460.96 -1.58% 

2 (90.0, 
7.34) 136.85 7.18% 164.47 0.10% 1460.80 -1.59% 

3 (63.9, 
15.00) 136.96 7.10% 119.42 27.47% 1007.14 -32.16% 

4 (67.6, 
15.00) 136.71 7.27% 120.34 26.90% 1031.21 -30.53% 

5 (50.9, -
3.23) 122.57 16.86% 356.37 

-
116.45

% 
785.72 -47.07% 

6 (90.0,  
8.09) 136.88 7.15% 162.46 1.33% 1462.77 -1.46% 

7 (63.4, 
15.00) 136.98 7.09% 119.41 27.48% 1005.11 -32.29% 

 

Figure 4.8 shows the non-dominated solutions of the elite set in a three-

dimensional space. The vertical axis represents tower acceleration. One horizontal axis 

represents the drive train acceleration and the other power output.  



www.manaraa.com

64 
 

 
 

 

Figure 4.8 Solution of the elite set in a 3-dimensional space 

4.5.2 Multi-point optimization  

The results presented in Table 4.12 involved one instance only. In this section, 

multi-point optimization will be introduced, and the same three cases discussed in 

Section 4.2 are considered. The data from 10/19/08 2:43:00 AM to 10/19/08 2:54:00 AM 

(a total of 11 minutes of 10-s data) is used in this study. Optimization results for three 

cases are presented.  

Figure 4.9 illustrates the optimization results of Case 1. The corresponding 

control strategies are illustrated in Figures 4.10 and 4.11. Figure 4.10 shows the original 

and computed torque. Figure 4.11 illustrates the original and the computed blade pitch 

angle. The mean reduction of the drive train acceleration over the 11-min time period is 
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shown in Table 4.13. The mean of the drive train acceleration has been reduced from 

131.67 to 119.67 (a 9.16% gain). 

Table 4.13 Gains in vibration reductions of the drive train for Case 1 

Case 1 (Minimize y1(t)) Minimum value (mean) Original value (mean) Gain (mean) 

Average drive train 
acceleration 119.61 131.67 9.16% 

 

Figure 4.9 The optimized and original drive train acceleration of Case 1 for 10-s data 
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Figure 4.10 The computed and original torque value of Case 1 for 10-s data 

 

Figure 4.11 The computed and original average blade pitch angle of Case 1 for 10-s data 

Figure 4.12 presents the results of Case 2. Figure 4.13 illustrates the computed 
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value of minimum tower acceleration is 86.38. The mean of the original tower 

acceleration is 127.47. The tower acceleration has been reduced by 32.23%. 

Table 4.14 Gain in reduction tower vibrations for Case 2 

Case 2 (Minimize y2(t)) Minimum value (mean) Original value (mean) Gain (mean) 

Tower acceleration 86.38 127.47 32.23% 

 

Figure 4.12 The optimized and original tower acceleration of Case 2 for 10-s data 

 

Figure 4.13 The computed and original torque value of Case 2 for 10-s data 
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Figure 4.14 The computed and original blade pitch angle of Case 2 for 10-s data 

Figure 4.15 shows the optimization results for Case 3 over the 11-min period. The 

original and computed values of the torque and the blade pitch angle are shown in Figure 

4.15 and Figure 4.16, respectively. In this case, the simulation results indicate that to 
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but an increase of the mean blade pitch angle. Table 4.15 shows a mean gain of 1.05% in 

maximizing power output. The average of the maximized power output shown in Table 

4.15 is 1498.02, and the mean original power output is 1482.42.  

         Table 4.15 Gains in power output for control strategy of Case 3 

Case 3 (Maximize 
y3(t)) 

Optimized value (mean) Original value (mean) Gain (mean) 

Power output 1498.02 1482.42 1.05% 

 

-2

0

2

4

6

8

10

12

14

16

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64
Bl

ad
e 

pi
tc

h 
an

gl
e

Time (10-s interval)

Computed value Original value



www.manaraa.com

69 
 

 
 

 

 

Figure 4.15 The optimized and original power output of Case 3 for 10-s data 

 

Figure 4.16 The computed and original torque value of Case 3 for 10-s data 
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Figure 4.17 The computed and original mean blade pitch angle of Case 3 for 10-s data 
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gain of the power output for the 10-s data set is larger than the gain of the power for the 

1-min data set, it is not as significant as the gain in reducing vibrations. This is due to the 

different characteristics of the power output and vibration in high frequency, as well as 

the bounded wind turbine power, here at 1.5 MW. These results indicate that using the 

current data frequency (0.1Hz) could limit even larger gains in vibrations. Using higher 

frequency data would likely unleash additional gains in vibrations reduction. The 

accelerometer and the SCADA system available for this research are typical of the 

present industrial standard and did not offer higher frequency vibration data.  

Table 4.16 Comparison of computational results                                                         
for 10-s data set and 1-min data set over 10 min horizon 

Mean Value 

Minimize Drive  
Train Acceleration 

Optimized Drive  
Train Acceleration 

Original Drive  
Train Acceleration 

Gain 

10-s data set  119.53 131.49 9.10% 

1-min data set  124.06 131.79 5.87% 

Minimize  
Tower Acceleration 

Optimized  
Tower Acceleration 

Original  
Tower Acceleration 

Gain 

10-s data set  87.22 127.82 31.76% 

1-min data set  106.26 130.32 18.46% 

Maximize Power Output Optimized Power Output Original Power Output Gain 

10-s data set  1497.99 1481.72 1.10% 

1-min data set  1497.79 1482.57 1.03% 

 

4.6 Summary 

In this chapter a multi-objective optimization model involving wind turbine power 

output, vibration of drive train, and vibration of tower was studied. A data-driven 

approach for model development was introduced. The drive train vibration and tower 
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acceleration were represented with accelerations of the drive train and the tower. Models 

developed for prediction of vibrations and the power produced by the turbine were 

trained by Neural Network and their accuracies were tested. Although the power output 

was considered as an objective, its negative relationship with other two objectives 

indicate that it also served as a bound constraining the mitigation aimed at curtailing 

drive train vibration and tower vibration.  

Industrial data sets used in the study were collected by a SCADA system. The 

original data set was sampled at 10-s intervals (0.1 Hz frequency). Although the research 

showed that the data collected by the industry-accepted frequency could not be sufficient 

to fully mitigate turbine vibrations, the methodology presented in this paper could be 

used once suitable data becomes available. Bounded by the data availability, a 1-min data 

set was derived by averaging instances in the original 10-s data set to present effect of 

information loss in modeling and optimization. Both data sets were used to model drive 

train vibration, tower vibration and the power output of a wind turbine. The prediction 

accuracy of the derived models was tested with independent data sets. Four metrics, 

MAE, SD of MAE, MAPE and SD of MAPE, all defined in the paper, were introduced to 

evaluate the performance of data-driven models. Comparative study of computational 

experiments demonstrated that the potential to reduce vibration of the drive train and 

tower by optimized control.   

The multi-objective optimization model was solved with an evolutionary strategy 

algorithm. The impact of selection pressure and population size on the efficiency of the 

evolutionary strategy algorithm was studied. The optimization results generated based on 

three weight assignment cases presented the potential gains of vibration mitigation and 

power maximization by adjusting two controllable variables, the generator torque and the 

blade pitch angle. The computational results demonstrated that the gains in reduced wind 

turbine vibrations and increased power output were larger for the 10-s data sets than those 
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for the 1-min data sets. All 1-min data sets were obtained by averaging the corresponding 

10-s data.  

The objective of this chapter, building accurate data-driven models to study the 

impact of turbine control on their vibrations and power output and demonstrating the 

optimization results of wind turbine performance, was accomplished.  
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CHAPTER 5  

CONCLUSION 

A data-driven methodology to analyze wind turbine vibrations was introduced. It 

included analysis of wind turbine vibration data, building wind turbine vibration models, 

and investigating optimization of wind turbine performance by considering power 

generation and vibrations. The research reported in the Thesis shed light on a new 

perspective of reducing wind turbine vibrations. Chapter 2 introduced the data analysis of 

wind turbine vibration from two different angles, time domain and frequency domain. In 

the time domain analysis, data set was decomposed to three partitions according to the 

wind speed values. This data decomposition strategy provided a way to isolate the turbine 

vibrations attributed to both the drive train and the tower from the impact of other factors 

such as the wind itself, malfunctions of mechanical systems (e.g., shaft misalignments), 

and so on. Importance analysis of boosting tree algorithm, Global sensitivity analysis of 

Neural Network algorithm and Correlation Coefficient analysis were applied to 

investigate turbine parameters that could potentially impact wind turbine vibrations. The 

frequency domain analysis provided a different angle of investigating turbine vibrations. 

Fourier analysis transforms data from time domain to frequency domain. 

In Chapter 3, models to predict vibration of drive train and tower of wind turbine 

were studied. Wavelet analysis was introduced to smooth the value of drive train and 

tower acceleration as accelerometers were very sensitive to noise. Benefits of data 

denoising were discussed by comparing models based on original data and denoised data. 

Five data mining algorithms, Neural Network, Support Vector Machine, Standard 

Classification and Regression Tree, Boosting tree for regression and Random Forests for 

regression, were used to build models for drive train and tower vibrations. Data set were 

decomposed according to narrower range of wind speeds to further isolate vibration 

contributed by wind turbine control. 
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In Chapter 4 optimization of wind turbine performance was studied. A multi-

objective optimization model for maximizing power generation and reducing turbine 

vibrations was presented. Models for predicting generated power, drive train acceleration 

and tower acceleration were constructed by a Neural Network algorithm. An evolutionary 

strategy algorithm was employed to solve the overall model. Gains of power 

maximization and vibration mitigation under different weight assignments for objectives 

are presented. 

 One of the challenges for future research is to develop schemes for selection of 

Pareto optimal solutions. Adaptive control of wind turbine by considering the tradeoff 

between supply and demand of electricity is another avenue of research. In management 

of wind farm, both power production and maintenance cost are essential to managers. 

Operation of wind turbine in full capacity is not always a necessary and wise choice since 

abusing of system can lead to high maintenance cost due to, in part, frequent replacement 

of wind turbine components. Predictive control for wind turbine vibrations can be also 

another interesting topic for further research. The motivation of developing predictive 

model for wind turbine vibrations is providing suggested control settings to improve the 

manipulation of wind turbine. 
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APPENDIX A 

FIGURES ILLUSTRATING PREDICTION PERFORMANCE OF 

TURBINE 1 

Scenario 2 

 

Figure A.1 Scatter plot of the observed and predicted values of drive train acceleration 
for the first 200 points of Turbine 1 in Scenario 2 
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Figure A.2 Scatter plot of the observed and predicted values of tower acceleration for the 
first 200 points of Turbine 1 in Scenario 2 

 

Figure A.3 Run-chart of the observed and predicted values of drive train acceleration for 
the first 200 points of Turbine 1 in Scenario 2 
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Figure A.4 Run-chart of the observed and predicted values of tower acceleration for the 
first 200 points of Turbine 1 in Scenario 2 

Scenario 3 

 

Figure A.5 Scatter plot of the observed and predicted values of drive train acceleration 
for the first 200 points of Turbine 1 in Scenario 3 
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Figure A.6 Scatter plot of the observed and predicted values of tower acceleration for the 
first 200 points of Turbine 1 in Scenario 3 

 

Figure A.7 Run-chart of the observed and predicted values of drive train acceleration for 
the first 200 points of Turbine 1 in Scenario 3 
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Figure A.8 Run-chart of the observed and predicted values of tower acceleration for the 
first 200 points of Turbine 1 in Scenario 3 

Scenario 4 

 

Figure A.9 Scatter plot of the observed and predicted values of drive train acceleration 
for the first 200 points of Turbine 1 in Scenario 4 
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Figure A.10 Scatter plot of the observed and predicted values of tower acceleration for 
the first 200 points of Turbine 1 in Scenario 4 

 

Figure A.11 Run-chart of the observed and predicted values of drive train acceleration for 
the first 200 points of Turbine 1 in Scenario 4 

 

0

50

100

150

200

250

0 50 100 150 200 250

O
bs

er
ve

d 
va

lu
e

Predicted value

20
25
30
35
40
45
50
55
60

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

16
9

17
7

18
5

19
3

D
riv

e 
tra

in
 a

cc
el

er
at

io
n

Time (10-s interval)

Observed value Predicted value



www.manaraa.com

82 
 

 
 

 

 

Figure A.12 Run-chart of the observed and predicted values of tower acceleration for the 
first 200 points of Turbine 1 in Scenario 4 

Scenario 5 

 

Figure A.13 Scatter plot of the observed and predicted values of drive train acceleration 
for the first 200 points of Turbine 1 in Scenario 5 
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Figure A.14 Scatter plot of the observed and predicted values of tower acceleration for 
the first 200 points of Turbine 1 in Scenario 5 

 

Figure A.15 Run-chart of the observed and predicted values of drive train acceleration for 
the first 200 points of Turbine 1 in Scenario 5 
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Figure A.16 Run-chart of the observed and predicted values of tower acceleration for the 
first 200 points of Turbine 1 in Scenario 5 

Scenario 6 

 

Figure A.17 Scatter plot of the observed and predicted values of drive train acceleration 
for the first 200 points of Turbine 1 in Scenario 6 
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Figure A.18 Scatter plot of the observed and predicted values of tower acceleration for 
the first 200 points of Turbine 1 in Scenario 6 

 

Figure A.19 Run-chart of the observed and predicted values of drive train acceleration for 
the first 200 points of Turbine 1 in Scenario 6 

 

0

20

40

60

80

100

120

0 20 40 60 80 100 120

O
bs

er
ve

d 
va

lu
e

Predicted value

30
35
40
45
50
55
60
65
70

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

16
9

17
7

18
5

19
3

D
riv

e 
tra

in
 a

cc
el

er
at

io
n

Time (10-s interval)

Observed value Predicted value



www.manaraa.com

86 
 

 
 

 

 

Figure A.20 Run-chart of the observed and predicted values of tower acceleration for the 
first 200 points of Turbine 1 in Scenario 6 

Scenario 7 

 

Figure A.21 Scatter plot of the observed and predicted values of drive train acceleration 
for the first 200 points of Turbine 1 in Scenario 7 
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Figure A.22 Scatter plot of the observed and predicted values of tower acceleration for 
the first 200 points of Turbine 1 in Scenario 7 

 

Figure A.23 Run-chart of the observed and predicted values of drive train acceleration for 
the first 200 points of Turbine 1 in Scenario 7 
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Figure A.24 Run-chart of the observed and predicted values of tower acceleration for the 
first 200 points of Turbine 1 in Scenario 7 

Scenario 8 

 

Figure A.25 Scatter plot of the observed and predicted values of drive train acceleration 
for the first 200 points of Turbine 1 in Scenario 8 
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Figure A.26 Scatter plot of the observed and predicted values of tower acceleration for 
the first 200 points of Turbine 1 in Scenario 8 

 

Figure A.27 Run-chart of the observed and predicted values of drive train acceleration for 
the first 200 points of Turbine 1 in Scenario 8 
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Figure A.28 Run-chart of the observed and predicted values of tower acceleration for the 
first 200 points of Turbine 1 in Scenario 8 

Scenario 9 

 

Figure A.29 Scatter plot of the observed and predicted values of drive train acceleration 
for the first 200 points of Turbine 1 in Scenario 9 
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Figure A.30 Scatter plot of the observed and predicted values of tower acceleration for 
the first 200 points of Turbine 1 in Scenario 9 

 

Figure A.31 Run-chart of the observed and predicted values of drive train acceleration for 
the first 200 points of Turbine 1 in Scenario 9 
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Figure A.32 Run-chart of the observed and predicted values of tower acceleration for the 
first 200 points of Turbine 1 in Scenario 9 
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APPENDIX B 

FIGURES ILLUSTRATING PREDICTION PERFORMANCE OF 

TURBINE 2 

Scenario 2 

 

Figure B.1 Scatter plot of the observed and predicted values of the drive train 
acceleration for the first 200 points of Turbine 2 in Scenario 2 

 

 

 

 

 

 

 

25

30

35

40

45

50

55

60

65

25 30 35 40 45 50 55 60 65

O
bs

er
ve

d 
va

lu
e

Predicted value



www.manaraa.com

94 
 

 
 

 

 

Figure B.2 Scatter plot of the observed and predicted values of the tower acceleration for 
the first 200 points of Turbine 2 in Scenario 2 

 

Figure B.3 Run-chart of the observed and predicted values of the drive train acceleration 
for the first 200 points of Turbine 2 in Scenario 2 
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Figure B.4 Run-chart of the observed and predicted values of the tower acceleration for 
the first 200 points of Turbine 2 in Scenario 2 

Scenario 3 

 

Figure B.5 Scatter plot of the observed and predicted values of the drive train 
acceleration for the first 200 points of Turbine 2 in Scenario 3 
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Figure B.6 Scatter plot of the observed and predicted values of the tower acceleration for 
the first 200 points of Turbine 2 in Scenario 3 

 

Figure B.7 Run-chart of the observed and predicted values of the drive train acceleration 
for the first 200 points of Turbine 2 in Scenario 3 
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Figure B.8 Run-chart of the observed and predicted values of the tower acceleration for 
the first 200 points of Turbine 2 in Scenario 3 

Scenario 4 

 

Figure B.9 Scatter plot of the observed and predicted values of the drive train 
acceleration for the first 200 points of Turbine 2 in Scenario 4 
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Figure B.10 Scatter plot of the observed and predicted values of the tower acceleration 
for the first 200 points of Turbine 2 in Scenario 4 

 

Figure B.11 Run-chart of the observed and predicted values of the drive train acceleration 
for the first 200 points of Turbine 2 in Scenario 4 

 

0

20

40

60

80

100

0 20 40 60 80 100

O
bs

er
ve

d 
va

lu
e

Predicted value

30
35
40
45
50
55
60
65
70
75

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

16
9

17
7

18
5

19
3

D
riv

e 
tra

in
 a

cc
el

er
at

io
n

Time (10-s interval)

Observed value Predicted value



www.manaraa.com

99 
 

 
 

 

 

Figure B.12 Run-chart of the observed and predicted values of the tower acceleration for 
the first 200 points of Turbine 2 in Scenario 4 

Scenario 5 

 

Figure B.13 Scatter plot of the observed and predicted values of the drive train 
acceleration for the first 200 points of Turbine 2 in Scenario 5 
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Figure B.14 Scatter plot of the observed and predicted values of the tower acceleration 
for the first 200 points of Turbine 2 in Scenario 5 

 

Figure B.15 Run-chart of the observed and predicted values of the drive train acceleration 
for the first 200 points of Turbine 2 in Scenario 5 

 

20

40

60

80

100

20 40 60 80 100

O
bs

er
ve

d 
va

lu
e

Predicted value

40
45
50
55
60
65
70
75
80

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

16
9

17
7

18
5

19
3

D
riv

e 
tra

in
 a

cc
el

er
at

io
n

Time (10-s interval)

Observed value Predicted value



www.manaraa.com

101 
 

 
 

 

 

Figure B.16 Run-chart of the observed and predicted values of the tower acceleration for 
the first 200 points of Turbine 2 in Scenario 5 

Scenario 6 

 

Figure B.17 Scatter plot of the observed and predicted values of the drive train 
acceleration for the first 200 points of Turbine 2 in Scenario 6 
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Figure B.18 Scatter plot of the observed and predicted values of the tower acceleration 
for the first 200 points of Turbine 2 in Scenario 6 

 

Figure B.19 Run-chart of the observed and predicted values of the drive train acceleration 
for the first 200 points of Turbine 2 in Scenario 6 
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Figure B.20 Run-chart of the observed and predicted values of the tower acceleration for 
the first 200 points of Turbine 2 in Scenario 6 

Scenario 7 

 

Figure B.21 Scatter plot of the observed and predicted values of the drive train 
acceleration for the first 200 points of Turbine 2 in Scenario 7 
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Figure B.22 Scatter plot of the observed and predicted values of the tower acceleration 
for the first 200 points of Turbine 2 in Scenario 7 

 

Figure B.23 Run-chart of the observed and predicted values of the drive train acceleration 
for the first 200 points of Turbine 2 in Scenario 7 
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Figure B.24 Run-chart of the observed and predicted values of the tower acceleration for 
the first 200 points of Turbine 2 in Scenario 7 

Scenario 8 

 

Figure B.25 Scatter plot of the observed and predicted values of the drive train 
acceleration for the first 200 points of Turbine 2 in Scenario 8 

0

50

100

150

200

250

300

350

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

16
9

17
7

18
5

19
3

To
w

er
 a

cc
el

er
at

io
n

Time (10-s interval)

Observed value Predicted value

50

70

90

110

130

150

50 70 90 110 130 150

O
bs

er
ve

d 
va

lu
e

Predicted value



www.manaraa.com

106 
 

 
 

 

 

Figure B.26 Scatter plot of the observed and predicted values of the tower acceleration 
for the first 200 points of Turbine 2 in Scenario 8 

 

Figure B.27 Run-chart of the observed and predicted values of the drive train acceleration 
for the first 200 points of Turbine 2 in Scenario 8 
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Figure B.28 Run-chart of the observed and predicted values of the tower acceleration for 
the first 200 points of Turbine 2 in Scenario 8 

Scenario 9 

 

Figure B.29 Scatter plot of the observed and predicted values of the drive train 
acceleration for the first 200 points of Turbine 2 in Scenario 9 
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Figure B.30 Scatter plot of the observed and predicted values of the tower acceleration 
for the first 200 points of Turbine 2 in Scenario 9 

 

Figure B.31 Run-chart of the observed and predicted values of the drive train acceleration 
for the first 200 points of Turbine 2 in Scenario 9 
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Figure B.32 Run-chart of the observed and predicted values of the tower acceleration for 
the first 200 points of Turbine 2 in Scenario 9 
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